cloudllm 0.10.1

A batteries-included Rust toolkit for building intelligent agents with LLM integration, multi-protocol tool support, and multi-agent orchestration.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
# CloudLLM

<p align="center">
  <img src="https://github.com/CloudLLM-ai/cloudllm/blob/master/logo.png?raw=true" width="220" alt="CloudLLM logo" />
</p>

CloudLLM is a batteries-included Rust toolkit for building intelligent agents with LLM integration,
multi-protocol tool support, and multi-agent orchestration. It provides:

* **Agents with Tools**: Create agents that connect to LLMs and execute actions through a flexible,
  multi-protocol tool system (local, remote MCP, Memory, custom protocols) with runtime hot-swapping,
* **Multi-Agent Orchestration**: An [`orchestration`]https://docs.rs/cloudllm/latest/cloudllm/orchestration/index.html engine
  supporting Parallel, RoundRobin, Moderated, Hierarchical, Debate, and Ralph collaboration patterns,
* **ThoughtChain**: Persistent, SHA-256 hash-chained agent memory with back-references for graph-based
  context resolution and tamper-evident integrity verification,
* **Context Strategies**: Pluggable strategies for handling context window exhaustion — Trim,
  SelfCompression (LLM writes its own save file), and NoveltyAware (entropy-based trigger),
* **Image Generation**: Unified image generation across OpenAI (DALL-E), Grok, and Google Gemini with the
  simplified `register_image_generation_tool()` helper,
* **Server Deployment**: Easy standalone MCP server creation via [`MCPServerBuilder`]https://docs.rs/cloudllm/latest/cloudllm/mcp_server/struct.MCPServerBuilder.html
  with HTTP, authentication, and IP filtering,
* **Flexible Tool Creation**: From simple Rust closures to advanced custom protocol implementations,
* **Event System**: Real-time observability via [`EventHandler`]https://docs.rs/cloudllm/latest/cloudllm/event/trait.EventHandler.html
  callbacks for LLM round-trips, tool calls, task completions, and orchestration lifecycle,
* **Stateful Sessions**: A [`LLMSession`]https://docs.rs/cloudllm/latest/cloudllm/struct.LLMSession.html for
  managing conversation history with context trimming and token accounting,
* **Provider Flexibility**: Unified [`ClientWrapper`]https://docs.rs/cloudllm/latest/cloudllm/client_wrapper/index.html
  trait for OpenAI, Claude, Gemini, Grok, and custom OpenAI-compatible endpoints.

The entire public API is documented with _compilable_ examples—run `cargo doc --open` to browse the
crate-level manual.

---

## Table of Contents

- [Installation]#installation
- [Quick Start]#quick-start
  - [LLMSession — stateful conversation (OpenAI)]#1-llmsession--stateful-conversation-openai
  - [Agent — identity + tools (Claude)]#2-agent--identity--tools-claude
  - [Streaming tokens in real time (Grok)]#3-streaming-tokens-in-real-time-grok
- [Multi-Agent Orchestration]#multi-agent-orchestration
  - [Orchestration Modes]#orchestration-modes
  - [Basic Example: RoundRobin]#basic-example-roundrobin
  - [Ralph: Autonomous PRD-Driven Loop]#ralph-autonomous-prd-driven-loop
- [Provider Wrappers]#provider-wrappers
- [LLMSession: Stateful Conversations]#llmsession-stateful-conversations-the-foundation
- [Agents: Building Intelligent Workers with Tools]#agents-building-intelligent-workers-with-tools
- [ThoughtChain: Persistent Agent Memory]#thoughtchain-persistent-agent-memory
- [Context Strategies: Managing Context Window Exhaustion]#context-strategies-managing-context-window-exhaustion
- [Agent::fork() — Lightweight Copies for Parallel Execution]#agentfork--lightweight-copies-for-parallel-execution
- [Runtime Tool Hot-Swapping]#runtime-tool-hot-swapping
- [Event System: Real-Time Agent & Orchestration Observability]#event-system-real-time-agent--orchestration-observability
  - [EventHandler Trait]#eventhandler-trait
  - [AgentEvent Variants]#agentevent-variants
  - [OrchestrationEvent Variants]#orchestrationevent-variants
  - [Registering an Event Handler]#registering-an-event-handler
  - [Full Example: Real-Time Progress Display]#full-example-real-time-progress-display
- [Tool Registry: Multi-Protocol Tool Access]#tool-registry-multi-protocol-tool-access
- [Deploying Tool Servers with MCPServerBuilder]#deploying-tool-servers-with-mcpserverbuilder
- [Creating Tools: Simple to Advanced]#creating-tools-simple-to-advanced
  - [Simple Tool Creation: Rust Closures]#simple-tool-creation-rust-closures
  - [Advanced Tool Creation: Custom Protocol Implementation]#advanced-tool-creation-custom-protocol-implementation
  - [Using Tools with Agents]#using-tools-with-agents
  - [Protocol Implementations]#protocol-implementations
  - [Built-in Tools]#built-in-tools
- [Image Generation]#image-generation
- [Examples]#examples
- [Support & Contributing]#support--contributing

---

## Installation

Add CloudLLM to your project:

```toml
[dependencies]
cloudllm = "0.10.1"
```

The crate targets `tokio` 1.x and Rust 1.70+.

---

## Quick Start

CloudLLM has two core abstractions for talking to LLMs:

| Abstraction | What it is | When to use it |
|-------------|-----------|----------------|
| **LLMSession** | Stateful conversation wrapper around any `ClientWrapper`. Maintains rolling history with automatic context trimming and token accounting. | Simple chat bots, Q&A, any 1-on-1 conversation with an LLM. |
| **Agent** | Wraps LLMSession with an identity (name, expertise, personality), optional tools, persistent ThoughtChain memory, and pluggable context strategies. Can execute actions, not just converse. | Tool-using assistants, orchestrated multi-agent teams, autonomous workflows. |

Think of it this way: **LLMSession is the foundation; Agent builds on top of it.**

### 1. LLMSession — stateful conversation (OpenAI)

```rust,no_run
use std::sync::Arc;
use cloudllm::{LLMSession, Role};
use cloudllm::clients::openai::{Model, OpenAIClient};

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    let client = Arc::new(OpenAIClient::new_with_model_enum(
        &std::env::var("OPEN_AI_SECRET")?, Model::GPT41Mini,
    ));

    let mut session = LLMSession::new(client, "You are a concise tutor.".into(), 8_192);

    let reply = session
        .send_message(Role::User, "What is ownership in Rust?".into(), None, None)
        .await?;

    println!("{}", reply.content);
    println!("Tokens used: {:?}", session.token_usage());
    Ok(())
}
```

### 2. Agent — identity + tools (Claude)

An Agent wraps a client just like LLMSession, but adds a name, expertise, personality, and
(optionally) tools. Here the agent uses Anthropic Claude and can answer questions using its
personality and expertise context:

```rust,no_run
use std::sync::Arc;
use cloudllm::Agent;
use cloudllm::clients::claude::{ClaudeClient, Model};

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error + Send + Sync>> {
    let client = Arc::new(ClaudeClient::new_with_model_enum(
        &std::env::var("ANTHROPIC_KEY")?, Model::ClaudeHaiku45,
    ));

    let agent = Agent::new("tutor", "Rust Tutor", client)
        .with_expertise("Rust programming, ownership, lifetimes")
        .with_personality("Patient teacher who uses short analogies");

    // generate() sends a one-shot prompt through the agent's identity context
    let answer = agent
        .generate(
            "You are a helpful programming tutor.",
            "Explain borrowing vs cloning in two sentences.",
            &[],  // no prior conversation history
        )
        .await?;

    println!("{}", answer);
    Ok(())
}
```

### 3. Streaming tokens in real time (Grok)

Any `ClientWrapper` supports streaming. Here we use xAI Grok:

```rust,no_run
use cloudllm::{LLMSession, Role};
use cloudllm::clients::grok::{GrokClient, Model};
use futures_util::StreamExt;
use std::sync::Arc;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    let client = Arc::new(GrokClient::new_with_model_enum(
        &std::env::var("XAI_KEY")?, Model::Grok3Mini,
    ));
    let mut session = LLMSession::new(client, "You think out loud.".into(), 16_000);

    if let Some(mut stream) = session
        .send_message_stream(Role::User, "Explain type erasure.".into(), None, None)
        .await? {
        while let Some(chunk) = stream.next().await {
            let chunk = chunk?;
            print!("{}", chunk.content);
            if let Some(reason) = chunk.finish_reason {
                println!("\n<terminated: {reason}>");
            }
        }
    }

    Ok(())
}
```

---

## Multi-Agent Orchestration

The [`orchestration`](https://docs.rs/cloudllm/latest/cloudllm/orchestration/index.html) module
coordinates conversations between multiple LLM agents. Each agent can have its own provider,
expertise, personality, and tool access. Choose from six collaboration patterns depending on your
use case.

### Orchestration Modes

| Mode | Description | Best For |
|------|-------------|----------|
| **Parallel** | All agents respond simultaneously; results are aggregated | Fast fan-out queries, getting diverse perspectives |
| **RoundRobin** | Agents take sequential turns, each building on previous responses | Iterative refinement, structured review |
| **Moderated** | Agents propose ideas, a moderator synthesizes the final answer | Consensus building, curated outputs |
| **Hierarchical** | Lead agent coordinates; specialists handle specific aspects | Complex tasks with delegation |
| **Debate** | Agents discuss and challenge until convergence is reached | Critical analysis, stress-testing ideas |
| **Ralph** | Autonomous iterative loop working through a PRD task list | Multi-step builds, code generation, structured project work |

### Basic Example: RoundRobin

```rust,no_run
use std::sync::Arc;

use cloudllm::orchestration::{Agent, Orchestration, OrchestrationMode};
use cloudllm::clients::openai::{Model, OpenAIClient};

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    let key = std::env::var("OPEN_AI_SECRET")?;

    let architect = Agent::new(
        "architect",
        "System Architect",
        Arc::new(OpenAIClient::new_with_model_enum(&key, Model::GPT4o)),
    )
    .with_expertise("Distributed systems")
    .with_personality("Pragmatic, direct");

    let tester = Agent::new(
        "qa",
        "QA Lead",
        Arc::new(OpenAIClient::new_with_model_enum(&key, Model::GPT41Mini)),
    )
    .with_expertise("Test automation")
    .with_personality("Sceptical, detail-oriented");

    let mut orchestration = Orchestration::new("design-review", "Deployment Review")
        .with_mode(OrchestrationMode::RoundRobin)
        .with_system_context("Collaboratively review the proposed architecture.");

    orchestration.add_agent(architect)?;
    orchestration.add_agent(tester)?;

    let outcome = orchestration
        .run("Evaluate whether the blue/green rollout plan is sufficient.", 2)
        .await?;

    for msg in outcome.messages {
        if let Some(name) = msg.agent_name {
            println!("{name}: {}", msg.content);
        }
    }

    Ok(())
}
```

### Ralph: Autonomous PRD-Driven Loop

**Ralph** (named after Ralph Wiggum) is an autonomous iterative orchestration mode where agents
work through a structured PRD (Product Requirements Document) task list. Each iteration presents
agents with the current task checklist. Agents signal completion by including
`[TASK_COMPLETE:task_id]` markers in their responses. The loop ends when all tasks are done or
`max_iterations` is reached.

Key features:
- **PRD-driven**: Structured `RalphTask` items with id, title, and description
- **Completion detection**: Agents include `[TASK_COMPLETE:task_id]` markers
- **Progress tracking**: `convergence_score` reports task completion fraction (0.0 to 1.0)
- **History trimming**: Conversation history is automatically trimmed to fit within `max_tokens`,
  keeping the most recent messages
- **Live progress**: Event handler shows real-time iteration progress, LLM round-trips, tool calls, and task completions (see [Event System]#event-system-real-time-agent--orchestration-observability)

```rust,no_run
use std::sync::Arc;

use cloudllm::orchestration::{Orchestration, OrchestrationMode, RalphTask};
use cloudllm::clients::claude::{ClaudeClient, Model};
use cloudllm::Agent;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error + Send + Sync>> {
    let key = std::env::var("ANTHROPIC_KEY")?;
    let make_client = || Arc::new(ClaudeClient::new_with_model_enum(&key, Model::ClaudeHaiku45));

    let frontend = Agent::new("frontend", "Frontend Dev", make_client())
        .with_expertise("HTML, CSS, Canvas");
    let backend = Agent::new("backend", "Backend Dev", make_client())
        .with_expertise("JavaScript, game logic");

    let tasks = vec![
        RalphTask::new("html",  "HTML Structure", "Create the HTML boilerplate and canvas"),
        RalphTask::new("loop",  "Game Loop",      "Implement requestAnimationFrame game loop"),
        RalphTask::new("input", "Controls",       "Add keyboard input for the paddle"),
    ];

    let mut orch = Orchestration::new("game-builder", "Game Builder")
        .with_mode(OrchestrationMode::Ralph {
            tasks,
            max_iterations: 5,
        })
        .with_system_context("Build a game. Output full HTML. Mark done with [TASK_COMPLETE:id].")
        .with_max_tokens(180_000);

    orch.add_agent(frontend)?;
    orch.add_agent(backend)?;

    let result = orch.run("Build a Pong game in a single index.html", 1).await?;

    println!("Iterations: {}",  result.round);
    println!("Complete: {}",    result.is_complete);
    println!("Progress: {:.0}%", result.convergence_score.unwrap_or(0.0) * 100.0);
    println!("Tokens: {}",     result.total_tokens_used);

    Ok(())
}
```

See `examples/breakout_game_ralph.rs` for a full working example that orchestrates 4 agents
through 10 PRD tasks to produce a complete Atari Breakout game with multi-hit bricks, powerups,
chiptune music, and collision sound effects.

For a deep dive into all collaboration modes, read
[`ORCHESTRATION_TUTORIAL.md`](./ORCHESTRATION_TUTORIAL.md).

---

## Provider wrappers

CloudLLM ships wrappers for popular OpenAI-compatible services:

| Provider | Module | Notable constructors |
|----------|--------|----------------------|
| OpenAI   | `cloudllm::clients::openai`  | `OpenAIClient::new_with_model_enum`, `OpenAIClient::new_with_base_url` |
| Anthropic Claude | `cloudllm::clients::claude` | `ClaudeClient::new_with_model_enum` |
| Google Gemini | `cloudllm::clients::gemini` | `GeminiClient::new_with_model_enum` |
| xAI Grok | `cloudllm::clients::grok` | `GrokClient::new_with_model_enum` |

Providers share the [`ClientWrapper`](https://docs.rs/cloudllm/latest/cloudllm/client_wrapper/trait.ClientWrapper.html)
contract, so you can swap them without changing downstream code.

```rust,no_run
use cloudllm::ClientWrapper;
use cloudllm::clients::claude::{ClaudeClient, Model};
use cloudllm::client_wrapper::{Message, Role};

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    let key = std::env::var("ANTHROPIC_KEY")?;
    let claude = ClaudeClient::new_with_model_enum(&key, Model::ClaudeSonnet4);

    let response = claude
        .send_message(
            &[Message { role: Role::User, content: "Summarise rice fermentation.".into() }],
            None,
            None,
        )
        .await?;

    println!("{}", response.content);
    Ok(())
}
```

Every wrapper exposes token accounting via [`ClientWrapper::get_last_usage`](https://docs.rs/cloudllm/latest/cloudllm/client_wrapper/trait.ClientWrapper.html#method.get_last_usage).

---

## LLMSession: Stateful Conversations (The Foundation)

LLMSession is the core building block—it maintains conversation history with automatic context trimming
and token accounting. Use it for simple stateful conversations with any LLM provider:

```rust,no_run
use std::sync::Arc;
use cloudllm::{LLMSession, Role};
use cloudllm::clients::openai::{OpenAIClient, Model};

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    let client = Arc::new(OpenAIClient::new_with_model_enum(
        &std::env::var("OPEN_AI_SECRET")?,
        Model::GPT41Mini
    ));

    let mut session = LLMSession::new(client, "You are helpful.".into(), 8_192);

    let reply = session
        .send_message(Role::User, "Tell me about Rust.".into(), None, None)
        .await?;

    println!("Assistant: {}", reply.content);
    println!("Tokens used: {:?}", session.token_usage());
    Ok(())
}
```

---

## Agents: Building Intelligent Workers with Tools

Agents extend LLMSession by adding identity, expertise, and optional tools. They're the primary
way to build sophisticated LLM interactions where you need the agent to take actions beyond
conversation.

The example below creates a single agent with **four tools** attached: the built-in Calculator,
a shared Memory store, image generation via OpenAI, and a custom Fibonacci tool — all on one
`CustomToolProtocol`:

```rust,no_run
use std::sync::Arc;
use cloudllm::Agent;
use cloudllm::clients::openai::{OpenAIClient, Model};
use cloudllm::tool_protocol::{ToolMetadata, ToolParameter, ToolParameterType, ToolResult, ToolRegistry};
use cloudllm::tool_protocols::{CustomToolProtocol, MemoryProtocol};
use cloudllm::tools::{Calculator, Memory};
use cloudllm::cloudllm::image_generation::register_image_generation_tool;
use cloudllm::cloudllm::{ImageGenerationProvider, new_image_generation_client};

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    let api_key = std::env::var("OPEN_AI_SECRET")?;

    let client = Arc::new(OpenAIClient::new_with_model_enum(&api_key, Model::GPT41Mini));

    // -- Tool protocol (all tools register here) ----------------------------
    let protocol = Arc::new(CustomToolProtocol::new());

    // 1. Calculator — wraps the built-in evaluator
    let calc = Calculator::new();
    protocol.register_async_tool(
        ToolMetadata::new("calculator", "Evaluate a math expression")
            .with_parameter(
                ToolParameter::new("expr", ToolParameterType::String)
                    .with_description("Math expression, e.g. sqrt(2) + mean([1,2,3])")
                    .required(),
            ),
        Arc::new(move |params| {
            let calc = calc.clone();
            Box::pin(async move {
                let expr = params["expr"].as_str().unwrap_or("0");
                match calc.evaluate(expr).await {
                    Ok(val) => Ok(ToolResult::success(serde_json::json!({ "result": val }))),
                    Err(e)  => Ok(ToolResult::failure(e.to_string())),
                }
            })
        }),
    ).await;

    // 2. Image generation — one-liner helper registers the tool
    let image_client = new_image_generation_client(ImageGenerationProvider::OpenAI, &api_key)?;
    register_image_generation_tool(&protocol, image_client).await?;

    // 3. Custom tool — Fibonacci sequence (sync closure, no boilerplate)
    protocol.register_tool(
        ToolMetadata::new("fibonacci", "Return the Nth Fibonacci number")
            .with_parameter(
                ToolParameter::new("n", ToolParameterType::Number)
                    .with_description("Index (0-based)")
                    .required(),
            ),
        Arc::new(|params| {
            let n = params["n"].as_u64().unwrap_or(0) as usize;
            let mut a: u64 = 0;
            let mut b: u64 = 1;
            for _ in 0..n {
                let tmp = a + b;
                a = b;
                b = tmp;
            }
            Ok(ToolResult::success(serde_json::json!({ "fib": a })))
        }),
    ).await;

    // -- Build the registry and the agent -----------------------------------
    // Memory lives in its own protocol so multiple agents can share it
    let memory = Arc::new(Memory::new());
    let mut registry = ToolRegistry::empty();
    registry.add_protocol("tools",  protocol).await?;
    registry.add_protocol("memory", Arc::new(MemoryProtocol::new(memory))).await?;

    let agent = Agent::new("assistant", "Research Assistant", client)
        .with_expertise("Math, memory, image generation, and Fibonacci numbers")
        .with_personality("Thorough and methodical")
        .with_tools(registry);

    println!("Agent '{}' ready with {} tools", agent.name, 4);
    Ok(())
}
```

**Key patterns shown above:**

| Pattern | Used For |
|---------|----------|
| `register_image_generation_tool()` | One-line built-in tool registration |
| `protocol.register_tool(metadata, closure)` | Sync custom tool (Fibonacci) |
| `protocol.register_async_tool(metadata, closure)` | Async tool wrapping a built-in (Calculator) |
| `MemoryProtocol::new(memory)` | Protocol wrapper for built-in Memory |
| `ToolRegistry::empty()` + `add_protocol()` | Multi-protocol registry |
| `agent.with_tools(registry)` | Attach tools to an agent |

---

## ThoughtChain: Persistent Agent Memory

[`ThoughtChain`](https://docs.rs/cloudllm/latest/cloudllm/thought_chain/struct.ThoughtChain.html) is an
append-only, SHA-256 hash-chained, disk-persisted log of agent thoughts. Each thought can carry
back-references to ancestor thoughts, forming a DAG that enables graph-based context resolution.

```text
ThoughtChain (.jsonl on disk)
  ├─ Thought #0  Finding      hash=abc1...   refs=[]
  ├─ Thought #1  Decision     hash=def2...   refs=[]      prev_hash=abc1...
  ├─ Thought #2  Finding      hash=789a...   refs=[]      prev_hash=def2...
  └─ Thought #3  Compression  hash=bcd3...   refs=[0, 2]  prev_hash=789a...
                             resolve_context(3) walks refs → returns [#0, #2, #3]
```

```rust,no_run
use cloudllm::Agent;
use cloudllm::thought_chain::{ThoughtChain, ThoughtType};
use cloudllm::clients::openai::OpenAIClient;
use std::sync::Arc;
use std::path::PathBuf;
use tokio::sync::RwLock;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error + Send + Sync>> {
    let chain = Arc::new(RwLock::new(
        ThoughtChain::open(&PathBuf::from("chains"), "analyst", "Analyst", Some("ML"), None)?
    ));

    let agent = Agent::new(
        "analyst", "Analyst",
        Arc::new(OpenAIClient::new_with_model_string(
            &std::env::var("OPEN_AI_SECRET")?, "gpt-4o",
        )),
    )
    .with_thought_chain(chain);

    // Record findings and decisions as the agent works
    agent.commit(ThoughtType::Finding, "Latency increased 3x after deploy").await?;
    agent.commit(ThoughtType::Decision, "Roll back to v2.3").await?;

    // Verify the hash chain is intact
    let entries = agent.thought_entries().await.unwrap();
    assert_eq!(entries.len(), 2);

    Ok(())
}
```

ThoughtChain files are newline-delimited JSON (`.jsonl`), one thought per line.
Use `ThoughtChain::verify_integrity()` to detect tampering, and
`ThoughtChain::resolve_context(index)` to reconstruct the minimal context
graph for any thought.

Resume a previously running agent from its chain:

```rust,no_run
use cloudllm::Agent;
use cloudllm::thought_chain::ThoughtChain;
use cloudllm::clients::openai::OpenAIClient;
use std::sync::Arc;
use std::path::PathBuf;
use tokio::sync::RwLock;

# fn main() -> Result<(), Box<dyn std::error::Error + Send + Sync>> {
let chain = Arc::new(RwLock::new(
    ThoughtChain::open(&PathBuf::from("chains"), "analyst", "Analyst", Some("ML"), None)?
));

// Resume from the latest thought — context graph is injected into a fresh session
let agent = Agent::resume_from_latest(
    "analyst", "Analyst",
    Arc::new(OpenAIClient::new_with_model_string(
        &std::env::var("OPEN_AI_SECRET")?, "gpt-4o",
    )),
    128_000,
    chain,
)?;
# Ok(())
# }
```

---

## Context Strategies: Managing Context Window Exhaustion

The [`ContextStrategy`](https://docs.rs/cloudllm/latest/cloudllm/context_strategy/trait.ContextStrategy.html)
trait lets you plug in different policies for what happens when an agent's conversation history
approaches its token budget.

| Strategy | Trigger | Action |
|----------|---------|--------|
| **TrimStrategy** (default) | Token ratio > 0.85 | No-op — LLMSession's built-in trimming handles it |
| **SelfCompressionStrategy** | Token ratio > 0.80 | LLM writes a structured save file; persisted to ThoughtChain |
| **NoveltyAwareStrategy** | High pressure always; moderate pressure + low novelty | Delegates to inner strategy (typically SelfCompression) |

```rust,no_run
use cloudllm::Agent;
use cloudllm::context_strategy::{NoveltyAwareStrategy, SelfCompressionStrategy};
use cloudllm::clients::openai::OpenAIClient;
use std::sync::Arc;

let agent = Agent::new(
    "analyst", "Analyst",
    Arc::new(OpenAIClient::new_with_model_string("key", "gpt-4o")),
)
.context_collapse_strategy(Box::new(
    NoveltyAwareStrategy::new(Box::new(SelfCompressionStrategy::default()))
        .with_thresholds(0.85, 0.65, 0.25),
));
```

The strategy can also be swapped at runtime via `agent.set_context_collapse_strategy(...)`.

---

## Agent::fork() — Lightweight Copies for Parallel Execution

`Agent` is intentionally not `Clone` (its `LLMSession` contains a bumpalo arena).  Instead, use
`fork()` to create a lightweight copy that shares the same tool registry and thought chain (via
`Arc`) but has a **fresh, empty** session:

```rust,no_run
use cloudllm::Agent;
use cloudllm::clients::openai::OpenAIClient;
use std::sync::Arc;

let agent = Agent::new(
    "analyst", "Analyst",
    Arc::new(OpenAIClient::new_with_model_string("key", "gpt-4o")),
).with_expertise("Cloud Architecture");

// Fork for parallel execution
let forked = agent.fork();
assert_eq!(forked.id, agent.id);
assert_eq!(forked.expertise, agent.expertise);
// forked has an empty session but shares tools and thought chain
```

Orchestration modes (Parallel, Hierarchical) use `fork()` internally when they need
temporary per-task agents.

---

## Runtime Tool Hot-Swapping

The tool registry is wrapped in `Arc<RwLock<ToolRegistry>>`, allowing protocols to be added
or removed while an agent is running:

```rust,no_run
use cloudllm::Agent;
use cloudllm::tool_protocols::CustomToolProtocol;
use cloudllm::clients::openai::OpenAIClient;
use std::sync::Arc;

# async {
let agent = Agent::new(
    "a1", "Agent",
    Arc::new(OpenAIClient::new_with_model_string("key", "gpt-4o")),
);

// Add a protocol at runtime
agent.add_protocol("custom", Arc::new(CustomToolProtocol::new())).await.unwrap();

// List available tools
let tools = agent.list_tools().await;
println!("Tools: {:?}", tools);

// Remove it later
agent.remove_protocol("custom").await;
# };
```

For sharing a mutable registry across agents, use `with_shared_tools()`:

```rust,no_run
use cloudllm::Agent;
use cloudllm::tool_protocol::ToolRegistry;
use cloudllm::clients::openai::OpenAIClient;
use std::sync::Arc;
use tokio::sync::RwLock;

let shared = Arc::new(RwLock::new(ToolRegistry::empty()));
let client = Arc::new(OpenAIClient::new_with_model_string("key", "gpt-4o"));

let agent_a = Agent::new("a", "Agent A", client.clone())
    .with_shared_tools(shared.clone());
let agent_b = Agent::new("b", "Agent B", client)
    .with_shared_tools(shared.clone());
// Adding a protocol via agent_a is visible to agent_b
```

---

## Event System: Real-Time Agent & Orchestration Observability

The [`event`](https://docs.rs/cloudllm/latest/cloudllm/event/index.html) module provides
a callback-based observability layer for agents and orchestrations. Implement the
[`EventHandler`](https://docs.rs/cloudllm/latest/cloudllm/event/trait.EventHandler.html) trait
to receive real-time notifications about LLM round-trips, tool calls, task completions, and more.

This replaces guessing what's happening during long-running orchestrations — you'll see exactly
when each agent starts thinking, which tools it calls, and when the LLM responds.

### EventHandler Trait

```rust,no_run
use cloudllm::event::{AgentEvent, EventHandler, OrchestrationEvent};
use async_trait::async_trait;

struct MyHandler;

#[async_trait]
impl EventHandler for MyHandler {
    async fn on_agent_event(&self, event: &AgentEvent) {
        // Handle agent-level events (LLM calls, tool usage, etc.)
        println!("Agent: {:?}", event);
    }
    async fn on_orchestration_event(&self, event: &OrchestrationEvent) {
        // Handle orchestration-level events (rounds, task completion, etc.)
        println!("Orchestration: {:?}", event);
    }
}
```

Both methods have **default no-op implementations**, so you only need to override the events you
care about. For example, to only observe orchestration-level progress:

```rust,no_run
# use cloudllm::event::{EventHandler, OrchestrationEvent};
# use async_trait::async_trait;
struct ProgressLogger;

#[async_trait]
impl EventHandler for ProgressLogger {
    async fn on_orchestration_event(&self, event: &OrchestrationEvent) {
        match event {
            OrchestrationEvent::RunCompleted { rounds, total_tokens, is_complete, .. } => {
                println!("Done! {} rounds, {} tokens, complete={}", rounds, total_tokens, is_complete);
            }
            _ => {}
        }
    }
}
```

### AgentEvent Variants

Events emitted by an [`Agent`](https://docs.rs/cloudllm/latest/cloudllm/struct.Agent.html)
during its lifecycle. Every variant carries `agent_id` and `agent_name` for identification.

| Variant | Fields | When Emitted |
|---------|--------|--------------|
| **`SendStarted`** | `message_preview` | At the start of `send()` or `generate_with_tokens()` |
| **`SendCompleted`** | `tokens_used`, `tool_calls_made`, `response_length` | When `send()` or `generate_with_tokens()` finishes successfully |
| **`LLMCallStarted`** | `iteration` | Before each LLM round-trip (first call + each tool-loop follow-up) |
| **`LLMCallCompleted`** | `iteration`, `tokens_used`, `response_length` | After each LLM round-trip completes |
| **`ToolCallDetected`** | `tool_name`, `parameters`, `iteration` | When a tool call is parsed from the LLM response |
| **`ToolExecutionCompleted`** | `tool_name`, `parameters`, `success`, `error`, `iteration` | After a tool finishes executing |
| **`ToolMaxIterationsReached`** | _(none extra)_ | When the tool loop hits its iteration cap |
| **`ThoughtCommitted`** | `thought_type` | After a thought is appended to the ThoughtChain |
| **`ProtocolAdded`** | `protocol_name` | When a new tool protocol is added to the agent |
| **`ProtocolRemoved`** | `protocol_name` | When a tool protocol is removed |
| **`SystemPromptSet`** | _(none extra)_ | When the agent's system prompt is set or replaced |
| **`MessageReceived`** | _(none extra)_ | When a message is injected into the agent's session |
| **`Forked`** | _(none extra)_ | When `fork()` creates a lightweight copy (fresh session) |
| **`ForkedWithContext`** | _(none extra)_ | When `fork_with_context()` copies the agent with history |

The `LLMCallStarted`/`LLMCallCompleted` pair is especially useful for understanding latency —
during orchestration you'll see exactly when each agent is waiting on the LLM and when the
response arrives.

### OrchestrationEvent Variants

Events emitted by an
[`Orchestration`](https://docs.rs/cloudllm/latest/cloudllm/orchestration/struct.Orchestration.html)
during a `run()`. Each variant carries `orchestration_id` for identification.

| Variant | Fields | When Emitted |
|---------|--------|--------------|
| **`RunStarted`** | `orchestration_name`, `mode`, `agent_count` | At the start of `run()` |
| **`RunCompleted`** | `orchestration_name`, `rounds`, `total_tokens`, `is_complete` | When `run()` finishes |
| **`RoundStarted`** | `round` | At the start of each round/iteration |
| **`RoundCompleted`** | `round` | At the end of each round/iteration |
| **`AgentSelected`** | `agent_id`, `agent_name`, `reason` | When an agent is chosen to respond (Moderated, Hierarchical modes) |
| **`AgentResponded`** | `agent_id`, `agent_name`, `tokens_used`, `response_length` | After an agent responds successfully |
| **`AgentFailed`** | `agent_id`, `agent_name`, `error` | When an agent encounters an error |
| **`ConvergenceChecked`** | `round`, `score`, `threshold`, `converged` | After similarity check in Debate mode |
| **`RalphIterationStarted`** | `iteration`, `max_iterations`, `tasks_completed`, `tasks_total` | At the start of each RALPH iteration |
| **`RalphTaskCompleted`** | `agent_id`, `agent_name`, `task_ids`, `tasks_completed_total`, `tasks_total` | When a RALPH task is completed by an agent |

### Registering an Event Handler

Wrap your handler in `Arc` and register it via the builder pattern:

**On an Agent:**

```rust,no_run
use std::sync::Arc;
use cloudllm::Agent;
use cloudllm::event::EventHandler;
use cloudllm::clients::openai::OpenAIClient;

# fn example(handler: Arc<dyn EventHandler>) {
let agent = Agent::new("a1", "Agent", Arc::new(
    OpenAIClient::new_with_model_string("key", "gpt-4o"),
))
.with_event_handler(handler);  // builder pattern
# }
```

You can also set or replace the handler at runtime:

```rust,no_run
# use std::sync::Arc;
# use cloudllm::Agent;
# use cloudllm::event::EventHandler;
# use cloudllm::clients::openai::OpenAIClient;
# fn example(handler: Arc<dyn EventHandler>) {
# let mut agent = Agent::new("a1", "Agent", Arc::new(
#     OpenAIClient::new_with_model_string("key", "gpt-4o"),
# ));
agent.set_event_handler(handler);  // runtime mutation
# }
```

**On an Orchestration:**

```rust,no_run
use std::sync::Arc;
use cloudllm::orchestration::{Orchestration, OrchestrationMode};
use cloudllm::event::EventHandler;

# fn example(handler: Arc<dyn EventHandler>) {
let orchestration = Orchestration::new("id", "Name")
    .with_mode(OrchestrationMode::RoundRobin)
    .with_event_handler(handler);  // auto-propagates to agents added later
# }
```

When you register an event handler on an `Orchestration`, it is **automatically propagated** to
every agent added via `add_agent()`. This means agents emit their own `AgentEvent`s through the
same handler, giving you a unified stream of both agent-level and orchestration-level events.

### Full Example: Real-Time Progress Display

This example (adapted from `examples/breakout_game_ralph.rs`) shows a handler that tracks
elapsed time and pretty-prints events as they happen:

```rust,no_run
use async_trait::async_trait;
use cloudllm::event::{AgentEvent, EventHandler, OrchestrationEvent};
use std::time::Instant;
use std::sync::Arc;

struct ProgressHandler {
    start: Instant,
}

impl ProgressHandler {
    fn new() -> Self { Self { start: Instant::now() } }

    fn elapsed(&self) -> String {
        let secs = self.start.elapsed().as_secs();
        format!("{:02}:{:02}", secs / 60, secs % 60)
    }
}

#[async_trait]
impl EventHandler for ProgressHandler {
    async fn on_agent_event(&self, event: &AgentEvent) {
        match event {
            AgentEvent::SendStarted { agent_name, message_preview, .. } => {
                let preview = &message_preview[..80.min(message_preview.len())];
                println!("  [{}] >> {} thinking... ({}...)", self.elapsed(), agent_name, preview);
            }
            AgentEvent::SendCompleted { agent_name, tokens_used, response_length, tool_calls_made, .. } => {
                let tokens = tokens_used.as_ref().map(|u| u.total_tokens).unwrap_or(0);
                println!("  [{}] << {} responded ({} chars, {} tokens, {} tool calls)",
                    self.elapsed(), agent_name, response_length, tokens, tool_calls_made);
            }
            AgentEvent::LLMCallStarted { agent_name, iteration, .. } => {
                println!("  [{}]    {} sending to LLM (round {})...", self.elapsed(), agent_name, iteration);
            }
            AgentEvent::LLMCallCompleted { agent_name, iteration, tokens_used, response_length, .. } => {
                let tokens = tokens_used.as_ref()
                    .map(|u| format!("{} tokens", u.total_tokens))
                    .unwrap_or_else(|| "no token info".to_string());
                println!("  [{}]    {} LLM round {} complete ({} chars, {})",
                    self.elapsed(), agent_name, iteration, response_length, tokens);
            }
            AgentEvent::ToolCallDetected { agent_name, tool_name, parameters, iteration, .. } => {
                println!("  [{}]    {} calling tool '{}' (iter {}), params={}",
                    self.elapsed(), agent_name, tool_name, iteration,
                    serde_json::to_string(parameters).unwrap_or_default());
            }
            AgentEvent::ToolExecutionCompleted { agent_name, tool_name, success, error, .. } => {
                if *success {
                    println!("  [{}]    {} tool '{}' succeeded", self.elapsed(), agent_name, tool_name);
                } else {
                    println!("  [{}]    {} tool '{}' FAILED: {}",
                        self.elapsed(), agent_name, tool_name, error.as_deref().unwrap_or("unknown"));
                }
            }
            _ => {}
        }
    }

    async fn on_orchestration_event(&self, event: &OrchestrationEvent) {
        match event {
            OrchestrationEvent::RunStarted { orchestration_name, mode, agent_count, .. } => {
                println!("\n{}\n  {} — mode={}, agents={}\n{}",
                    "=".repeat(70), orchestration_name, mode, agent_count, "=".repeat(70));
            }
            OrchestrationEvent::RalphIterationStarted { iteration, max_iterations, tasks_completed, tasks_total, .. } => {
                println!("\n  RALPH Iteration {}/{} — {}/{} tasks complete",
                    iteration, max_iterations, tasks_completed, tasks_total);
            }
            OrchestrationEvent::RalphTaskCompleted { agent_name, task_ids, tasks_completed_total, tasks_total, .. } => {
                println!("  [{}] *** {} completed tasks: [{}] — progress: {}/{}",
                    self.elapsed(), agent_name, task_ids.join(", "), tasks_completed_total, tasks_total);
            }
            OrchestrationEvent::AgentFailed { agent_name, error, .. } => {
                println!("  [{}] !!! {} FAILED: {}", self.elapsed(), agent_name, error);
            }
            OrchestrationEvent::RunCompleted { rounds, total_tokens, is_complete, .. } => {
                println!("\n{}\n  Run complete — {} rounds, {} tokens, complete={}\n{}",
                    "=".repeat(70), rounds, total_tokens, is_complete, "=".repeat(70));
            }
            _ => {}
        }
    }
}

// Register on an orchestration (auto-propagates to all agents):
// let handler = Arc::new(ProgressHandler::new());
// let orchestration = Orchestration::new("id", "Name")
//     .with_event_handler(handler);
```

**Sample output during a RALPH run:**

```text
======================================================================
  Breakout Game RALPH Orchestration — mode=Ralph, agents=4
======================================================================

  RALPH Iteration 1/5 — 0/10 tasks complete
  [00:00] >> Game Architect thinking... (Build a complete Atari Breakout game...)
  [00:00]    Game Architect sending to LLM (round 1)...
  [00:22]    Game Architect LLM round 1 complete (8923 chars, 3241 tokens)
  [00:22]    Game Architect calling tool 'write_game_file' (iter 1), params={"filename":"breakout_game.html",...}
  [00:22]    Game Architect tool 'write_game_file' succeeded
  [00:22]    Game Architect sending to LLM (round 2)...
  [00:35]    Game Architect LLM round 2 complete (412 chars, 158 tokens)
  [00:35] << Game Architect responded (412 chars, 3399 tokens, 1 tool calls)
  [00:35] *** Game Architect completed tasks: [html_structure, game_loop] — progress: 2/10
  [00:35] >> Game Programmer thinking... (Build a complete Atari Breakout game...)
  ...
```

---

## Tool Registry: Multi-Protocol Tool Access

Agents access tools through the `ToolRegistry`, which supports **multiple simultaneous protocols**. Use local tools, remote MCP servers, persistent Memory, or custom implementations—all transparently:

### Adding Tools to a Registry

```rust,no_run
use std::sync::Arc;
use cloudllm::tool_protocol::ToolRegistry;
use cloudllm::tool_protocols::{CustomToolProtocol, McpClientProtocol};

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Create empty registry for multiple protocols
    let mut registry = ToolRegistry::empty();

    // Add local tools (Rust closures)
    let local = Arc::new(CustomToolProtocol::new());
    registry.add_protocol("local", local).await?;

    // Add remote MCP servers
    let github = Arc::new(McpClientProtocol::new("http://localhost:8081".to_string()));
    registry.add_protocol("github", github).await?;

    let calculator = Arc::new(McpClientProtocol::new("http://localhost:8082".to_string()));
    registry.add_protocol("calculator", calculator).await?;

    // Agent using this registry accesses all tools transparently!
    Ok(())
}
```

**Key Benefits:**
- **Local + Remote**: Mix tools from different sources in a single agent
- **Transparent Routing**: Registry automatically routes calls to the correct protocol
- **Dynamic Management**: Add/remove protocols at runtime
- **Backward Compatible**: Existing single-protocol code still works

### Registry Modes

**Multi-Protocol (New agents):**
```rust
let mut registry = ToolRegistry::empty();
registry.add_protocol("name", protocol).await?;
```

**Single-Protocol (Existing code):**
```rust
let protocol = Arc::new(CustomToolProtocol::new());
let registry = ToolRegistry::new(protocol);
```

---

## Deploying Tool Servers with MCPServerBuilder

Create standalone MCP servers exposing tools over HTTP. Perfect for microservices, integration testing, or sharing tools across your infrastructure:

```rust,no_run
use std::sync::Arc;
use cloudllm::mcp_server::MCPServerBuilder;
use cloudllm::tool_protocols::CustomToolProtocol;
use cloudllm::tool_protocol::{ToolMetadata, ToolResult};

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    let protocol = Arc::new(CustomToolProtocol::new());

    // Register tools
    protocol.register_tool(
        ToolMetadata::new("calculator", "Evaluate math expressions"),
        Arc::new(|params| {
            let expr = params["expr"].as_str().unwrap_or("0");
            Ok(ToolResult::success(serde_json::json!({"result": 42.0})))
        }),
    ).await;

    // Deploy with security options
    MCPServerBuilder::new()
        .with_protocol("tools", protocol)
        .with_port(8080)
        .with_localhost_only()  // Only accept localhost
        .with_bearer_token("your-secret-token")  // Optional auth
        .build_and_serve()
        .await?;

    Ok(())
}
```

Available on the `mcp-server` feature. Other agents connect via `McpClientProtocol::new("http://localhost:8080")`.

---

## Creating Tools: Simple to Advanced

CloudLLM provides a powerful, protocol-agnostic tool system that works seamlessly with agents and orchestrations.
Tools enable agents to take actions beyond conversation—calculate values, query databases, call APIs, or
maintain state across sessions.

### Simple Tool Creation: Rust Closures

Register Rust functions or closures as tools. Perfect for quick prototyping:

```rust,no_run
use std::sync::Arc;
use cloudllm::tool_protocols::CustomToolProtocol;
use cloudllm::tool_protocol::{ToolMetadata, ToolResult};

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    let protocol = Arc::new(CustomToolProtocol::new());

    // Synchronous tool
    protocol.register_tool(
        ToolMetadata::new("add", "Add two numbers"),
        Arc::new(|params| {
            let a = params["a"].as_f64().unwrap_or(0.0);
            let b = params["b"].as_f64().unwrap_or(0.0);
            Ok(ToolResult::success(serde_json::json!({"result": a + b})))
        }),
    ).await;

    // Asynchronous tool
    protocol.register_async_tool(
        ToolMetadata::new("fetch_url", "Fetch data from a URL"),
        Arc::new(|params| {
            Box::pin(async {
                let url = params["url"].as_str().unwrap_or("");
                // Perform async operation
                Ok(ToolResult::success(serde_json::json!({"url": url, "status": "ok"})))
            })
        }),
    ).await;

    Ok(())
}
```

### Advanced Tool Creation: Custom Protocol Implementation

For complex tools or external system integration, implement the `ToolProtocol` trait:

```rust,no_run
use async_trait::async_trait;
use cloudllm::tool_protocol::{ToolMetadata, ToolProtocol, ToolResult};
use std::error::Error;

pub struct DatabaseAdapter;

#[async_trait]
impl ToolProtocol for DatabaseAdapter {
    async fn execute(
        &self,
        tool_name: &str,
        parameters: serde_json::Value,
    ) -> Result<ToolResult, Box<dyn Error + Send + Sync>> {
        match tool_name {
            "query" => {
                let sql = parameters["sql"].as_str().unwrap_or("");
                // Execute actual database query
                Ok(ToolResult::success(serde_json::json!({"result": "data"})))
            }
            _ => Ok(ToolResult::failure("Unknown tool".to_string()))
        }
    }

    async fn list_tools(&self) -> Result<Vec<ToolMetadata>, Box<dyn Error + Send + Sync>> {
        Ok(vec![ToolMetadata::new("query", "Execute SQL query")])
    }

    async fn get_tool_metadata(
        &self,
        tool_name: &str,
    ) -> Result<ToolMetadata, Box<dyn Error + Send + Sync>> {
        Ok(ToolMetadata::new(tool_name, "Database query tool"))
    }

    fn protocol_name(&self) -> &str {
        "database"
    }
}
```

### Using Tools with Agents

Agents use tools through a registry. Connect any tool source to an agent:

```rust,no_run
use std::sync::Arc;
use cloudllm::Agent;
use cloudllm::clients::openai::{OpenAIClient, Model};
use cloudllm::tool_protocols::CustomToolProtocol;
use cloudllm::tool_protocol::{ToolMetadata, ToolRegistry, ToolResult};

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Create tools
    let protocol = Arc::new(CustomToolProtocol::new());
    protocol.register_tool(
        ToolMetadata::new("add", "Add two numbers"),
        Arc::new(|params| {
            let a = params["a"].as_f64().unwrap_or(0.0);
            let b = params["b"].as_f64().unwrap_or(0.0);
            Ok(ToolResult::success(serde_json::json!({"result": a + b})))
        }),
    ).await;

    let registry = ToolRegistry::new(protocol);

    // Create agent with tool access
    let agent = Agent::new(
        "calculator",
        "Calculator Agent",
        Arc::new(OpenAIClient::new_with_model_enum(
            &std::env::var("OPEN_AI_SECRET")?,
            Model::GPT41Mini
        )),
    )
    .with_expertise("Performs calculations")
    .with_tools(registry);

    println!("Agent ready with tools");
    Ok(())
}
```

### Protocol Implementations

#### 1. CustomToolProtocol (Local Rust Functions)

Register local Rust closures or async functions as tools. Covered above under "Simple Tool Creation".

#### 2. McpClientProtocol (Remote MCP Servers)

Connect to remote MCP servers:

```rust,no_run
use std::sync::Arc;
use cloudllm::tool_protocols::McpClientProtocol;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Connect to an MCP server
    let protocol = Arc::new(McpClientProtocol::new("http://localhost:8080".to_string()));

    // List available tools from the MCP server
    let tools = protocol.list_tools().await?;
    println!("Available tools: {}", tools.len());

    Ok(())
}
```

#### 3. MemoryProtocol (Persistent Agent State)

For maintaining state across sessions within a single process:

```rust,no_run
use std::sync::Arc;
use cloudllm::tools::Memory;
use cloudllm::tool_protocols::MemoryProtocol;
use cloudllm::tool_protocol::ToolRegistry;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Create shared memory for persistence
    let memory = Arc::new(Memory::new());
    let protocol = Arc::new(MemoryProtocol::new(memory));
    let registry = ToolRegistry::new(protocol);

    // Execute memory operations
    let result = registry.execute_tool(
        "memory",
        serde_json::json!({"command": "P task_name ImportantTask 3600"}),
    ).await?;

    println!("Stored: {}", result.output);
    Ok(())
}
```


### Built-in Tools

CloudLLM includes several production-ready tools that agents can use directly:

#### Calculator Tool

A fast, reliable scientific calculator for mathematical operations and statistical analysis. Perfect for agents that need to perform computations.

**Features:**
- Comprehensive arithmetic operations (`+`, `-`, `*`, `/`, `^`, `%`)
- Trigonometric functions (sin, cos, tan, csc, sec, cot, asin, acos, atan)
- Hyperbolic functions (sinh, cosh, tanh, csch, sech, coth)
- Logarithmic and exponential functions (ln, log, log2, exp)
- Statistical operations (mean, median, mode, std, stdpop, var, varpop, sum, count, min, max)
- Mathematical constants (pi, e)

**Usage Example:**

```rust,no_run
use cloudllm::tools::Calculator;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    let calc = Calculator::new();

    // Arithmetic
    println!("{}", calc.evaluate("2 + 2 * 3").await?);  // 8.0

    // Trigonometry (radians)
    println!("{}", calc.evaluate("sin(pi/2)").await?);  // 1.0

    // Statistical functions
    println!("{}", calc.evaluate("mean([1, 2, 3, 4, 5])").await?);  // 3.0

    Ok(())
}
```

**More Examples:**
- `sqrt(16)` -> 4.0
- `log(100)` -> 2.0 (base 10)
- `std([1, 2, 3, 4, 5])` -> 1.581 (sample standard deviation)
- `floor(3.7)` -> 3.0

For comprehensive documentation, see [`Calculator` API docs](https://docs.rs/cloudllm/latest/cloudllm/tools/struct.Calculator.html).

#### Memory Tool

A persistent, TTL-aware key-value store for maintaining agent state across sessions. Perfect for single agents to track progress or multi-agent orchestrations to coordinate decisions.

**Features:**
- Key-value storage with optional TTL (time-to-live) expiration
- Automatic background expiration of stale entries (1-second cleanup)
- Metadata tracking (creation timestamp, expiration time)
- Succinct protocol for LLM communication (token-efficient)
- Thread-safe shared access across agents
- Designed specifically for agent communication (not a general database)

**Basic Usage Example:**

```rust,no_run
use cloudllm::tools::Memory;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    let memory = Memory::new();

    // Store data with 1-hour TTL
    memory.put("research_progress".to_string(), "Found 3 relevant papers".to_string(), Some(3600));

    // Retrieve data
    if let Some((value, metadata)) = memory.get("research_progress", true) {
        println!("Progress: {}", value);
        println!("Stored at: {:?}", metadata.unwrap().added_utc);
    }

    // List all stored keys
    let keys = memory.list_keys();
    println!("Active memories: {:?}", keys);

    // Store without expiration (permanent)
    memory.put("important_decision".to_string(), "Use approach A".to_string(), None);

    // Delete specific memory
    memory.delete("research_progress");

    // Clear all memories
    memory.clear();

    Ok(())
}
```

**Using with Agents via Tool Protocol:**

```rust,no_run
use std::sync::Arc;
use cloudllm::tools::Memory;
use cloudllm::tool_protocols::MemoryProtocol;
use cloudllm::tool_protocol::ToolRegistry;
use cloudllm::Agent;
use cloudllm::clients::openai::{OpenAIClient, Model};

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Create shared memory for agents
    let memory = Arc::new(Memory::new());

    // Wrap with protocol for agent usage
    let protocol = Arc::new(MemoryProtocol::new(memory.clone()));
    let registry = ToolRegistry::new(protocol);

    // Create agent with memory access
    let agent = Agent::new(
        "researcher",
        "Research Agent",
        Arc::new(OpenAIClient::new_with_model_enum(
            &std::env::var("OPEN_AI_SECRET")?,
            Model::GPT41Mini
        )),
    )
    .with_tools(registry);

    // Agent can now use memory via commands like:
    // "P research_state Gathering data 7200"
    // "G research_state META"
    // "L"

    Ok(())
}
```

**Memory Protocol Commands (for agents):**

The Memory tool uses a token-efficient protocol designed for LLM communication:

| Command | Syntax | Example | Use Case |
|---------|--------|---------|----------|
| **Put** | `P <key> <value> [ttl_seconds]` | `P task_status InProgress 3600` | Store state with 1-hour expiration |
| **Get** | `G <key> [META]` | `G task_status META` | Retrieve value + metadata |
| **List** | `L [META]` | `L META` | List all keys with metadata |
| **Delete** | `D <key>` | `D task_status` | Remove specific memory |
| **Clear** | `C` | `C` | Wipe all memories |
| **Spec** | `SPEC` | `SPEC` | Get protocol specification |

**Multi-Agent Memory Sharing:**

```rust,no_run
use std::sync::Arc;
use cloudllm::tools::Memory;
use cloudllm::tool_protocols::MemoryProtocol;
use cloudllm::tool_protocol::ToolRegistry;
use cloudllm::{Agent, orchestration::{Orchestration, OrchestrationMode}};
use tokio::sync::RwLock;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Create shared memory (all agents access same instance)
    let shared_memory = Arc::new(Memory::new());

    let protocol = Arc::new(MemoryProtocol::new(shared_memory));
    let shared_registry = Arc::new(RwLock::new(ToolRegistry::new(protocol)));

    // Create orchestration of agents — shared registry is visible to both
    let agent1 = Agent::new(...)
        .with_shared_tools(shared_registry.clone());

    let agent2 = Agent::new(...)
        .with_shared_tools(shared_registry.clone());

    // Both agents access same memory
    let mut orchestration = Orchestration::new("research", "Collaborative Research");
    orchestration.add_agent(agent1)?;
    orchestration.add_agent(agent2)?;

    // Agents can:
    // 1. Coordinate: Agent A stores findings, Agent B retrieves
    // 2. Consensus: Store decisions that others can see
    // 3. Progress: Track overall research advancement

    Ok(())
}
```

For comprehensive documentation and patterns, see [`Memory` API docs](https://docs.rs/cloudllm/latest/cloudllm/tools/struct.Memory.html).

#### HTTP Client Tool

A secure REST API client for calling external services with domain allowlist/blocklist protection. Perfect for agents that need to make HTTP requests to external APIs.

**Features:**
- All HTTP methods (GET, POST, PUT, DELETE, PATCH, HEAD)
- Domain security with allowlist/blocklist (blocklist takes precedence)
- Basic authentication and bearer token support
- Custom headers and query parameters with automatic URL encoding
- JSON response parsing
- Configurable request timeout and response size limits
- Thread-safe with connection pooling
- Builder pattern for chainable configuration

**Usage Example:**

```rust,no_run
use cloudllm::tools::HttpClient;
use std::time::Duration;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    let mut client = HttpClient::new();

    // Security: only allow api.example.com
    client.allow_domain("api.example.com");

    // Configuration via builder pattern
    client
        .with_header("Authorization", "Bearer token123")
        .with_query_param("format", "json")
        .with_timeout(Duration::from_secs(30));

    // Make request
    let response = client.get("https://api.example.com/data").await?;

    // Check status and parse JSON
    if response.is_success() {
        let json_data = response.json()?;
        println!("Data: {}", json_data);
    }

    Ok(())
}
```

**Security Best Practices:**
- **Domain Allowlist**: `client.allow_domain("api.trusted-service.com")`
- **Deny Malicious Domains**: `client.deny_domain("malicious.attacker.com")`
- **Timeout Protection**: `client.with_timeout(Duration::from_secs(30))`
- **Size Limits**: `client.with_max_response_size(10 * 1024 * 1024)` (10MB)
- **Authentication**: `client.with_basic_auth("user", "pass")` or `client.with_header("Authorization", "Bearer token")`

For comprehensive documentation, see [`HttpClient` API docs](https://docs.rs/cloudllm/latest/cloudllm/tools/struct.HttpClient.html) and `examples/http_client_example.rs`.

#### Bash Tool

Secure command execution on Linux and macOS with timeout and security controls. See [`BashTool` API docs](https://docs.rs/cloudllm/latest/cloudllm/tools/struct.BashTool.html).

#### File System Tool

Safe file and directory operations with path traversal protection and optional extension filtering. Perfect for agents that need to read, write, and manage files within designated directories.

**Key Features:**
- Read, write, append, and delete files
- Directory creation, listing, and recursive deletion
- File metadata retrieval (size, modification time, is_directory)
- File search with pattern matching
- Path traversal prevention (`../../../etc/passwd` is blocked)
- Optional file extension filtering for security
- Root path restriction for sandboxing

**Basic Usage:**

```rust,no_run
use cloudllm::tools::FileSystemTool;
use std::path::PathBuf;

// Create tool with root path restriction
let fs = FileSystemTool::new()
    .with_root_path(PathBuf::from("/home/user/documents"))
    .with_allowed_extensions(vec!["txt".to_string(), "md".to_string()]);

// Write a file
fs.write_file("notes.txt", "Important information").await?;

// Read a file
let content = fs.read_file("notes.txt").await?;

// List directory contents
let entries = fs.read_directory(".", false).await?;
for entry in entries {
    println!("{}: {} bytes", entry.name, entry.size);
}

// Get metadata
let metadata = fs.get_file_metadata("notes.txt").await?;
println!("Size: {} bytes, Modified: {}", metadata.size, metadata.modified);
```

For comprehensive documentation, see the [`FileSystemTool` API docs](https://docs.rs/cloudllm/latest/cloudllm/tools/struct.FileSystemTool.html) and `examples/filesystem_example.rs`.

### Creating Custom Protocol Adapters

Implement the [`ToolProtocol`](https://docs.rs/cloudllm/latest/cloudllm/tool_protocol/trait.ToolProtocol.html) trait to support new protocols:

```rust,no_run
use async_trait::async_trait;
use cloudllm::tool_protocol::{ToolMetadata, ToolProtocol, ToolResult};
use std::error::Error;

/// Example: Custom protocol adapter for a hypothetical service
pub struct MyCustomAdapter {
    // Your implementation
}

#[async_trait]
impl ToolProtocol for MyCustomAdapter {
    async fn execute(
        &self,
        tool_name: &str,
        parameters: serde_json::Value,
    ) -> Result<ToolResult, Box<dyn Error + Send + Sync>> {
        // Implement tool execution logic
        Ok(ToolResult::success(serde_json::json!({})))
    }

    async fn list_tools(&self) -> Result<Vec<ToolMetadata>, Box<dyn Error + Send + Sync>> {
        // Return available tools
        Ok(vec![])
    }

    async fn get_tool_metadata(
        &self,
        tool_name: &str,
    ) -> Result<ToolMetadata, Box<dyn Error + Send + Sync>> {
        // Return specific tool metadata
        Ok(ToolMetadata::new(tool_name, "Tool description"))
    }

    fn protocol_name(&self) -> &str {
        "my-custom-protocol"
    }
}
```

### Best Practices for Tools

1. **Clear Names & Descriptions**: Make tool purposes obvious to LLMs
2. **Comprehensive Parameters**: Document all required and optional parameters
3. **Error Handling**: Return meaningful error messages in ToolResult
4. **Atomicity**: Each tool should do one thing well
5. **Documentation**: Include examples in tool descriptions
6. **Testing**: Test tool execution in isolation before integration

For more examples, see the `examples/` directory and run `cargo doc --open` for complete API documentation.

---

## Image Generation

CloudLLM provides unified image generation across OpenAI, Grok, and Google Gemini. The new `register_image_generation_tool()` helper dramatically simplifies adding image generation capabilities to agents.

### Quick Start: Image Generation Tool

Register an image generation tool with a single line:

```rust,no_run
use std::sync::Arc;
use cloudllm::Agent;
use cloudllm::clients::openai::{OpenAIClient, Model};
use cloudllm::cloudllm::image_generation::register_image_generation_tool;
use cloudllm::cloudllm::{ImageGenerationProvider, new_image_generation_client};
use cloudllm::tool_protocols::CustomToolProtocol;
use cloudllm::tool_protocol::ToolRegistry;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    let api_key = std::env::var("OPEN_AI_SECRET")?;

    // Create image generation client (choose provider: OpenAI, Grok, or Gemini)
    let image_client = new_image_generation_client(
        ImageGenerationProvider::OpenAI,
        &api_key,
    )?;

    // Create a tool protocol
    let protocol = Arc::new(CustomToolProtocol::new());

    // Register the image generation tool (much simpler than manual implementation!)
    let rt = tokio::runtime::Runtime::new()?;
    rt.block_on(register_image_generation_tool(&protocol, image_client.clone()))?;

    // Create agent with image generation capability
    let registry = ToolRegistry::new(protocol);

    let agent = Agent::new(
        "designer",
        "Creative Designer",
        Arc::new(OpenAIClient::new_with_model_enum(&api_key, Model::GPT41Mini)),
    )
    .with_tools(registry)
    .with_expertise("Creating visual content")
    .with_personality("Creative and detailed");

    println!("Agent created with image generation capability");
    Ok(())
}
```

### Supported Providers

| Provider | Model | Supported Ratios |
|----------|-------|------------------|
| OpenAI (DALL-E 3) | `gpt-image-1.5` | 1:1, 16:9, 4:3, 3:2, 9:16, 3:4, 2:3 |
| Grok Imagine | `grok-2-image-1212` | 1:1, 16:9, 4:3, 3:2, 9:16, 3:4, 2:3, and more |
| Google Gemini | `gemini-2.5-flash-image` | 1:1, 2:3, 3:2, 3:4, 4:3, 4:5, 5:4, 9:16, 16:9, 21:9 |

### Using Different Providers

```rust,no_run
use cloudllm::cloudllm::{ImageGenerationProvider, new_image_generation_client};

// OpenAI (realistic, high-quality)
let client = new_image_generation_client(
    ImageGenerationProvider::OpenAI,
    &std::env::var("OPEN_AI_SECRET")?,
)?;

// Grok (fast, creative)
let client = new_image_generation_client(
    ImageGenerationProvider::Grok,
    &std::env::var("XAI_KEY")?,
)?;

// Gemini (flexible aspect ratios)
let client = new_image_generation_client(
    ImageGenerationProvider::Gemini,
    &std::env::var("GEMINI_API_KEY")?,
)?;
```

### Parsing from Strings with FromStr

For dynamic provider selection from strings, use the `FromStr` trait:

```rust,no_run
use cloudllm::cloudllm::{ImageGenerationProvider, new_image_generation_client};
use std::str::FromStr;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    let provider_name = "grok";  // From config, user input, etc.

    // Parse string to enum using FromStr trait
    let provider = ImageGenerationProvider::from_str(provider_name)?;

    // Create client with parsed provider
    let client = new_image_generation_client(
        provider,
        &std::env::var("XAI_KEY")?,
    )?;

    println!("Using provider: {}", provider.display_name());
    Ok(())
}
```

**Supported provider strings (case-insensitive):**
- `"openai"` -> OpenAI (DALL-E 3)
- `"grok"` -> Grok Imagine
- `"gemini"` -> Google Gemini

For comprehensive documentation, see the [`image_generation` module docs](https://docs.rs/cloudllm/latest/cloudllm/cloudllm/image_generation/index.html).

---

## Examples

Clone the repository and run the provided examples:

```bash
export OPEN_AI_SECRET=...
export ANTHROPIC_KEY=...
export GEMINI_KEY=...
export XAI_KEY=...

cargo run --example interactive_session
cargo run --example streaming_session
cargo run --example orchestration_demo
cargo run --example breakout_game_ralph
```

Each example corresponds to a module in the documentation so you can cross-reference the code with
explanations.

---

## Support & contributing

Issues and pull requests are welcome via [GitHub](https://github.com/CloudLLM-ai/cloudllm).
Please open focused pull requests against `main` and include tests or doc updates where relevant.

CloudLLM is released under the [MIT License](./LICENSE).

---

Happy orchestration!