#ifndef CHUNKCOPY_H
#define CHUNKCOPY_H
#include <stdint.h>
#include "zutil.h"
#define Z_STATIC_ASSERT(name, assert) typedef char name[(assert) ? 1 : -1]
#if __STDC_VERSION__ >= 199901L
#define Z_RESTRICT restrict
#else
#define Z_RESTRICT
#endif
#if defined(__clang__) || defined(__GNUC__) || defined(__llvm__)
#define Z_BUILTIN_MEMCPY __builtin_memcpy
#define Z_BUILTIN_MEMSET __builtin_memset
#else
#define Z_BUILTIN_MEMCPY zmemcpy
#define Z_BUILTIN_MEMSET zmemset
#endif
#if defined(INFLATE_CHUNK_SIMD_NEON)
#include <arm_neon.h>
typedef uint8x16_t z_vec128i_t;
#elif defined(INFLATE_CHUNK_SIMD_SSE2)
#include <emmintrin.h>
typedef __m128i z_vec128i_t;
#else
typedef struct { uint8_t x[16]; } z_vec128i_t;
#endif
#define CHUNKCOPY_CHUNK_SIZE sizeof(z_vec128i_t)
Z_STATIC_ASSERT(vector_128_bits_wide,
CHUNKCOPY_CHUNK_SIZE == sizeof(int8_t) * 16);
static inline z_vec128i_t loadchunk(
const unsigned char FAR* s) {
z_vec128i_t v;
Z_BUILTIN_MEMCPY(&v, s, sizeof(v));
return v;
}
static inline void storechunk(
unsigned char FAR* d,
const z_vec128i_t v) {
Z_BUILTIN_MEMCPY(d, &v, sizeof(v));
}
static inline unsigned char FAR* chunkcopy_core(
unsigned char FAR* out,
const unsigned char FAR* from,
unsigned len) {
const int bump = (--len % CHUNKCOPY_CHUNK_SIZE) + 1;
storechunk(out, loadchunk(from));
out += bump;
from += bump;
len /= CHUNKCOPY_CHUNK_SIZE;
while (len-- > 0) {
storechunk(out, loadchunk(from));
out += CHUNKCOPY_CHUNK_SIZE;
from += CHUNKCOPY_CHUNK_SIZE;
}
return out;
}
static inline unsigned char FAR* chunkcopy_core_safe(
unsigned char FAR* out,
const unsigned char FAR* from,
unsigned len,
unsigned char FAR* limit) {
Assert(out + len <= limit, "chunk copy exceeds safety limit");
if ((limit - out) < (ptrdiff_t)CHUNKCOPY_CHUNK_SIZE) {
const unsigned char FAR* Z_RESTRICT rfrom = from;
if (len & 8) {
Z_BUILTIN_MEMCPY(out, rfrom, 8);
out += 8;
rfrom += 8;
}
if (len & 4) {
Z_BUILTIN_MEMCPY(out, rfrom, 4);
out += 4;
rfrom += 4;
}
if (len & 2) {
Z_BUILTIN_MEMCPY(out, rfrom, 2);
out += 2;
rfrom += 2;
}
if (len & 1) {
*out++ = *rfrom++;
}
return out;
}
return chunkcopy_core(out, from, len);
}
static inline unsigned char FAR* chunkunroll_relaxed(
unsigned char FAR* out,
unsigned FAR* dist,
unsigned FAR* len) {
const unsigned char FAR* from = out - *dist;
while (*dist < *len && *dist < CHUNKCOPY_CHUNK_SIZE) {
storechunk(out, loadchunk(from));
out += *dist;
*len -= *dist;
*dist += *dist;
}
return out;
}
#if defined(INFLATE_CHUNK_SIMD_NEON)
static inline z_vec128i_t v_load64_dup(const void* src) {
return vcombine_u8(vld1_u8(src), vld1_u8(src));
}
static inline z_vec128i_t v_load32_dup(const void* src) {
int32_t i32;
Z_BUILTIN_MEMCPY(&i32, src, sizeof(i32));
return vreinterpretq_u8_s32(vdupq_n_s32(i32));
}
static inline z_vec128i_t v_load16_dup(const void* src) {
int16_t i16;
Z_BUILTIN_MEMCPY(&i16, src, sizeof(i16));
return vreinterpretq_u8_s16(vdupq_n_s16(i16));
}
static inline z_vec128i_t v_load8_dup(const void* src) {
return vld1q_dup_u8((const uint8_t*)src);
}
static inline void v_store_128(void* out, const z_vec128i_t vec) {
vst1q_u8(out, vec);
}
#elif defined (INFLATE_CHUNK_SIMD_SSE2)
static inline z_vec128i_t v_load64_dup(const void* src) {
int64_t i64;
Z_BUILTIN_MEMCPY(&i64, src, sizeof(i64));
return _mm_set1_epi64x(i64);
}
static inline z_vec128i_t v_load32_dup(const void* src) {
int32_t i32;
Z_BUILTIN_MEMCPY(&i32, src, sizeof(i32));
return _mm_set1_epi32(i32);
}
static inline z_vec128i_t v_load16_dup(const void* src) {
int16_t i16;
Z_BUILTIN_MEMCPY(&i16, src, sizeof(i16));
return _mm_set1_epi16(i16);
}
static inline z_vec128i_t v_load8_dup(const void* src) {
return _mm_set1_epi8(*(const char*)src);
}
static inline void v_store_128(void* out, const z_vec128i_t vec) {
_mm_storeu_si128((__m128i*)out, vec);
}
#else
static inline z_vec128i_t v_load64_dup(const void* src) {
int64_t in;
Z_BUILTIN_MEMCPY(&in, src, sizeof(in));
z_vec128i_t out;
for (int i = 0; i < sizeof(out); i += sizeof(in)) {
Z_BUILTIN_MEMCPY((uint8_t*)&out + i, &in, sizeof(in));
}
return out;
}
static inline z_vec128i_t v_load32_dup(const void* src) {
int32_t in;
Z_BUILTIN_MEMCPY(&in, src, sizeof(in));
z_vec128i_t out;
for (int i = 0; i < sizeof(out); i += sizeof(in)) {
Z_BUILTIN_MEMCPY((uint8_t*)&out + i, &in, sizeof(in));
}
return out;
}
static inline z_vec128i_t v_load16_dup(const void* src) {
int16_t in;
Z_BUILTIN_MEMCPY(&in, src, sizeof(in));
z_vec128i_t out;
for (int i = 0; i < sizeof(out); i += sizeof(in)) {
Z_BUILTIN_MEMCPY((uint8_t*)&out + i, &in, sizeof(in));
}
return out;
}
static inline z_vec128i_t v_load8_dup(const void* src) {
int8_t in = *(uint8_t const*)src;
z_vec128i_t out;
Z_BUILTIN_MEMSET(&out, in, sizeof(out));
return out;
}
static inline void v_store_128(void* out, const z_vec128i_t vec) {
Z_BUILTIN_MEMCPY(out, &vec, sizeof(vec));
}
#endif
static inline unsigned char FAR* chunkset_core(
unsigned char FAR* out,
unsigned period,
unsigned len) {
z_vec128i_t v;
const int bump = ((len - 1) % sizeof(v)) + 1;
switch (period) {
case 1:
v = v_load8_dup(out - 1);
v_store_128(out, v);
out += bump;
len -= bump;
while (len > 0) {
v_store_128(out, v);
out += sizeof(v);
len -= sizeof(v);
}
return out;
case 2:
v = v_load16_dup(out - 2);
v_store_128(out, v);
out += bump;
len -= bump;
if (len > 0) {
v = v_load16_dup(out - 2);
do {
v_store_128(out, v);
out += sizeof(v);
len -= sizeof(v);
} while (len > 0);
}
return out;
case 4:
v = v_load32_dup(out - 4);
v_store_128(out, v);
out += bump;
len -= bump;
if (len > 0) {
v = v_load32_dup(out - 4);
do {
v_store_128(out, v);
out += sizeof(v);
len -= sizeof(v);
} while (len > 0);
}
return out;
case 8:
v = v_load64_dup(out - 8);
v_store_128(out, v);
out += bump;
len -= bump;
if (len > 0) {
v = v_load64_dup(out - 8);
do {
v_store_128(out, v);
out += sizeof(v);
len -= sizeof(v);
} while (len > 0);
}
return out;
}
out = chunkunroll_relaxed(out, &period, &len);
return chunkcopy_core(out, out - period, len);
}
static inline unsigned char FAR* chunkcopy_relaxed(
unsigned char FAR* Z_RESTRICT out,
const unsigned char FAR* Z_RESTRICT from,
unsigned len) {
return chunkcopy_core(out, from, len);
}
static inline unsigned char FAR* chunkcopy_safe(
unsigned char FAR* out,
const unsigned char FAR* Z_RESTRICT from,
unsigned len,
unsigned char FAR* limit) {
Assert(out + len <= limit, "chunk copy exceeds safety limit");
return chunkcopy_core_safe(out, from, len, limit);
}
static inline unsigned char FAR* chunkcopy_lapped_relaxed(
unsigned char FAR* out,
unsigned dist,
unsigned len) {
if (dist < len && dist < CHUNKCOPY_CHUNK_SIZE) {
return chunkset_core(out, dist, len);
}
return chunkcopy_core(out, out - dist, len);
}
static inline unsigned char FAR* chunkcopy_lapped_safe(
unsigned char FAR* out,
unsigned dist,
unsigned len,
unsigned char FAR* limit) {
Assert(out + len <= limit, "chunk copy exceeds safety limit");
if ((limit - out) < (ptrdiff_t)(3 * CHUNKCOPY_CHUNK_SIZE)) {
while (len-- > 0) {
*out = *(out - dist);
out++;
}
return out;
}
return chunkcopy_lapped_relaxed(out, dist, len);
}
static inline unsigned char FAR* chunkcopy_safe_ugly(unsigned char FAR* out,
unsigned dist,
unsigned len,
unsigned char FAR* limit) {
#if defined(__GNUC__) && !defined(__clang__)
return chunkcopy_core_safe(out, out - dist, len, limit);
#elif defined(__clang__) && !defined(__aarch64__)
return chunkcopy_core_safe(out, out - dist, len, limit);
#else
return chunkcopy_lapped_safe(out, dist, len, limit);
#endif
}
#ifdef INFLATE_CHUNK_READ_64LE
typedef uint64_t inflate_holder_t;
static inline inflate_holder_t read64le(const unsigned char FAR *in) {
inflate_holder_t input;
Z_BUILTIN_MEMCPY(&input, in, sizeof(input));
return input;
}
#else
typedef unsigned long inflate_holder_t;
#endif
#undef Z_STATIC_ASSERT
#undef Z_RESTRICT
#undef Z_BUILTIN_MEMCPY
#endif