clock-curve-math 0.6.0

High-performance, constant-time, cryptography-grade number theory library for ClockCurve ecosystem
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
# clock-curve-math

[![Crates.io](https://img.shields.io/crates/v/clock-curve-math.svg)](https://crates.io/crates/clock-curve-math)
[![Documentation](https://docs.rs/clock-curve-math/badge.svg)](https://docs.rs/clock-curve-math)
[![License](https://img.shields.io/badge/license-MIT%20OR%20Apache--2.0-blue.svg)](https://github.com/Olyntar-Labs/clock-curve-math)

High-performance, constant-time, cryptography-grade number theory library for the ClockCurve ecosystem.

**🎉 Version 0.6.0 - Feature-Complete Stable Release!** Production-ready cryptography foundation with full ecosystem integration, cross-platform support, and comprehensive security guarantees.

## Overview

`clock-curve-math` provides the mathematical foundation for ClockCurve cryptography, implementing:

- **Big integer arithmetic** with constant-time operations
- **Montgomery arithmetic** for efficient modular operations
- **FieldElement** modulo `p = 2^255 - 19` (Ed25519 field)
- **Scalar** modulo `l = 2^252 + 27742317777372353535851937790883648493` (Ed25519 group order)
- **Constant-time helpers** for secure computations

All operations are designed for cryptographic security with timing attack resistance.

## ✅ Version 0.6.0 - Feature-Complete Stable Release

This stable release provides production-ready cryptography with full ecosystem integration:

- **✓ BigInt Operations**: Full arithmetic (add, sub, mul, cmp) with constant-time guarantees
- **✓ Montgomery Arithmetic**: Complete REDC algorithm with precomputed constants
- **✓ FieldElement Operations**: All arithmetic (add, sub, mul, inv, pow, square, neg) modulo p
- **✓ Scalar Operations**: All arithmetic (add, sub, mul, inv, pow, square, neg) modulo l
- **✓ Advanced Field Operations**: Batch inversion, multi-exponentiation, modular square root, Legendre symbol
- **✓ Constant-Time Helpers**: ct_eq, ct_neq, ct_lt, ct_gt, ct_select, ct_swap operations
- **✓ Multiple Backends**: Both `bigint-backend` (clock-bigint) and `custom-limbs` implementations
- **✓ Optional Features**: Serde serialization and random generation via clock-rand
- **✓ Security Verified**: Comprehensive audit with constant-time verification
- **✓ Cross-Platform**: Tested on x86_64, aarch64, riscv64, armv7, powerpc64, embedded targets
- **✓ Production Ready**: No unsafe code, comprehensive error handling, input validation
- **✓ Comprehensive Documentation**: Tutorials, examples, and API reference complete
- **✓ API Stability Assessment**: Complete API review with backward compatibility guarantees
- **✓ Ecosystem Integration**: Comprehensive testing with clock-bigint, clock-rand, and serde
- **✓ Cross-Feature Compatibility**: All feature flag combinations validated and tested
- **✓ Production Readiness**: Security audit preparation and performance benchmarking complete

## Features

### Backend Options

- **`bigint-backend`** (default): Use `clock-bigint` for optimized performance
- **`custom-limbs`**: Use custom limb array implementation (fallback)
- **`alloc`**: Heap allocations (required for advanced operations)
- **`std`**: Standard library support
- **`rand`**: Random generation via `clock-rand`
- **`serde`**: Serialization support

## Installation

Add this to your `Cargo.toml`:

```toml
[dependencies]
clock-curve-math = "0.6.0"
```

📦 **Latest Release**: [v0.6.0 - Feature-Complete Stable Release](https://github.com/Olyntar-Labs/clock-curve-math/releases/tag/v0.6.0)

## 🎯 Version 0.6.0 - Final Release Roadmap

The 0.6.0 release is the first stable version of `clock-curve-math`, providing:

- **API Stability Guarantees**: Backward compatibility for the 0.6.x series
- **Production Readiness**: Comprehensive testing and security validation
- **Ecosystem Integration**: Seamless integration with ClockCurve components
- **Documentation**: Complete API reference and integration guides

### Release Schedule
- **✅ 0.6.0**: Feature-Complete Stable Release (Complete)

### Feature Flags

For custom backend:
```toml
[dependencies]
clock-curve-math = { version = "0.6.0", default-features = false, features = ["custom-limbs", "alloc"] }
```

## Tutorials

### Getting Started

This section provides step-by-step guides for common use cases.

#### 1. Basic Field Arithmetic

```rust
use clock_curve_math::{FieldElement, FieldOps};

// Create field elements from various sources
let a = FieldElement::from_u64(42);
let b = FieldElement::from_bytes(&[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
                                   17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32])
    .expect("valid bytes");

// Perform basic arithmetic
let sum = a.add(&b);
let difference = a.sub(&b);
let product = a.mul(&b);
let square = a.square();

// Check if element is valid (in range [0, p))
assert!(a.is_valid());
assert!(sum.is_valid());
```

#### 2. Scalar Arithmetic for Digital Signatures

```rust
use clock_curve_math::{Scalar, ScalarOps};

// Generate a random scalar (private key)
let private_key = Scalar::from_u64(0x123456789ABCDEF);

// Perform scalar operations used in signature schemes
let k = Scalar::from_u64(42);  // Random nonce
let r = private_key.mul(&k);   // r = private_key * k
let s = k.inv().mul(&r);       // s = k^(-1) * r (simplified)

// Convert to bytes for transmission
let signature_bytes = r.to_bytes();
```

#### 3. Batch Operations for Efficiency

```rust
use clock_curve_math::{FieldElement, field::advanced::batch_inverse};

// When computing many inverses, use batch inversion for better performance
let elements = vec![
    FieldElement::from_u64(2),
    FieldElement::from_u64(3),
    FieldElement::from_u64(5),
    FieldElement::from_u64(7),
];

let inverses = batch_inverse(&elements).expect("all elements invertible");

// Verify: element[i] * inverse[i] ≡ 1 mod p
for (elem, inv) in elements.iter().zip(inverses.inverses.iter()) {
    assert_eq!(elem.mul(inv), FieldElement::from_u64(1));
}
```

#### 4. Multi-Exponentiation for Pairings

```rust
use clock_curve_math::{FieldElement, BigInt, field::advanced::multi_exp};

// Multi-exponentiation: g₁ᵉ¹ * g₂ᵉ² * ... * gₙᵉⁿ
let bases = vec![
    FieldElement::from_u64(2),
    FieldElement::from_u64(3),
    FieldElement::from_u64(5),
];

let exponents = vec![
    BigInt::from_u64(10),
    BigInt::from_u64(20),
    BigInt::from_u64(30),
];

// Compute ∏ bases[i]^exponents[i]
let result = multi_exp(&bases, &exponents).expect("computation successful");
```

#### 5. Backend Selection Guide

**For Performance (Default):**
```toml
[dependencies]
clock-curve-math = "0.6.0"
```

**For Embedded/No-Std:**
```toml
[dependencies]
clock-curve-math = { version = "0.6.0", default-features = false, features = ["custom-limbs"] }
```

**For Random Generation:**
```toml
[dependencies]
clock-curve-math = { version = "0.6.0", features = ["rand"] }
```

**For Serialization:**
```toml
[dependencies]
clock-curve-math = { version = "0.6.0", features = ["serde"] }
```

## Usage

### Basic Arithmetic

```rust
use clock_curve_math::{FieldElement, Scalar};

// Create field elements (mod p)
let a = FieldElement::from_u64(10);
let b = FieldElement::from_u64(20);

let sum = a.add(&b);
let product = a.mul(&b);

// Create scalars (mod l)
let s1 = Scalar::from_u64(5);
let s2 = Scalar::from_u64(7);

let scalar_product = s1.mul(&s2);
```

### Byte Conversions

```rust
use clock_curve_math::FieldElement;

// From canonical bytes (32 bytes)
let bytes = [42u8; 32];
let fe = FieldElement::from_bytes(&bytes).expect("valid bytes");

// Back to bytes
let recovered_bytes = fe.to_bytes();

// From u64
let fe_from_int = FieldElement::from_u64(12345);
```

### Serialization with Serde

```rust
use clock_curve_math::{FieldElement, Scalar};
use serde_json;

// Serialize to JSON
let element = FieldElement::from_u64(42);
let json = serde_json::to_string(&element).unwrap();
println!("Serialized: {}", json);

// Deserialize from JSON
let deserialized: FieldElement = serde_json::from_str(&json).unwrap();
assert_eq!(element, deserialized);
```

### Random Generation

```rust
use clock_curve_math::{FieldElement, Scalar};
use clock_rand::Xoshiro256Plus;

let mut rng = Xoshiro256Plus::new(42);

// Generate random field element in [0, p)
let random_fe = FieldElement::random(&mut rng);

// Generate random non-zero field element in [1, p)
let random_nonzero_fe = FieldElement::random_nonzero(&mut rng);

// Generate random scalar in [0, l)
let random_scalar = Scalar::random(&mut rng);

// Generate random non-zero scalar in [1, l)
let random_nonzero_scalar = Scalar::random_nonzero(&mut rng);
```

### Error Handling and Validation

The library provides comprehensive error handling with the [`MathError`] enum:

```rust
use clock_curve_math::{FieldElement, Scalar, MathError, validation};

// Byte validation before construction
let bytes = [42u8; 32];
validation::validate_field_bytes(&bytes).expect("bytes in valid range");

let element = FieldElement::from_bytes(&bytes).expect("construction successful");

// Invalid bytes will return an error
let invalid_bytes = [0xFF; 32]; // May be >= p
match FieldElement::from_bytes(&invalid_bytes) {
    Ok(_) => println!("Valid field element"),
    Err(MathError::InvalidFieldElement) => println!("Value out of range"),
    Err(e) => println!("Other error: {:?}", e),
}

// Scalars work similarly
let scalar_bytes = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
                    17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32];
let scalar = Scalar::from_bytes(&scalar_bytes).expect("valid scalar");

```

### No-Std Usage

This crate supports `no_std` environments with flexible configurations for embedded systems and constrained environments.

#### Minimal Embedded Configuration

For microcontrollers and kernels with minimal memory:

```toml
[dependencies]
clock-curve-math = { version = "0.6.0", default-features = false, features = ["custom-limbs"] }
```

```rust,no_run
use clock_curve_math::{FieldElement, Scalar};

// All basic operations work without heap allocation
let a = FieldElement::from_u64(42);
let b = FieldElement::from_u64(24);
let sum = a.add(&b);
let product = a.mul(&b);

// Scalar operations work similarly
let s1 = Scalar::from_u64(5);
let s2 = Scalar::from_u64(7);
let scalar_product = s1.mul(&s2);
```

#### With Heap Allocation

For environments with allocators but no full std:

```toml
[dependencies]
clock-curve-math = { version = "0.6.0", default-features = false, features = ["alloc", "custom-limbs"] }
```

```rust,no_run
use clock_curve_math::{FieldElement, field};

// Basic operations still work
let a = FieldElement::from_u64(42);

// Advanced operations requiring allocation
let elements = vec![a, FieldElement::from_u64(24)];
let inverses = field::batch_inverse(&elements).unwrap();
```

#### Backend Options

- **`custom-limbs`**: Pure Rust implementation, no external dependencies, full no_std
- **`bigint-backend`**: High-performance using `clock-bigint` (requires `alloc`)

#### Tested Architectures

- **Desktop/Server**: x86_64, aarch64, riscv64gc, armv7, powerpc64
- **Embedded**: thumbv7em-none-eabi, thumbv8m.main-none-eabi
- **Cross-compilation**: All major Rust targets supported

### Advanced Operations

#### Batch Inversion

Efficiently compute the multiplicative inverse of multiple field elements:

```rust
use clock_curve_math::{FieldElement, field::advanced::batch_inverse};

// Batch inversion is more efficient than computing inverses individually
let elements = vec![
    FieldElement::from_u64(2),
    FieldElement::from_u64(3),
    FieldElement::from_u64(5),
    FieldElement::from_u64(7),
];

let inverses = batch_inverse(&elements).expect("all elements have inverses");

// Verify: elements[i] * inverses[i] ≡ 1 mod p
for (elem, inv) in elements.iter().zip(inverses.inverses.iter()) {
    assert_eq!(elem.mul(inv), FieldElement::from_u64(1));
}

// Performance: O(n) multiplications + O(1) inversions vs O(n) inversions individually
```

#### Multi-Exponentiation

Compute products of multiple bases raised to exponents efficiently:

```rust
use clock_curve_math::{FieldElement, BigInt, field::advanced::multi_exp};

// Multi-exponentiation: ∏ bases[i]^exponents[i]
let bases = vec![
    FieldElement::from_u64(2),  // 2^x
    FieldElement::from_u64(3),  // 3^y
    FieldElement::from_u64(5),  // 5^z
];

let exponents = vec![
    BigInt::from_u64(10),  // x = 10
    BigInt::from_u64(20),  // y = 20
    BigInt::from_u64(30),  // z = 30
];

// Result = 2^10 * 3^20 * 5^30 mod p
let result = multi_exp(&bases, &exponents).expect("computation successful");

// Uses binary method for efficiency: O(n * max_bit_length) vs O(n * max_bit_length²)
```

#### Modular Square Root

Compute square roots in the finite field:

```rust
use clock_curve_math::{FieldElement, field::advanced::{sqrt, legendre_symbol}};

// Check if a number is a quadratic residue
let num = FieldElement::from_u64(4);
let legendre = legendre_symbol(&num);

// legendre_symbol returns:
// 1 if num is a quadratic residue (has square root)
// -1 if num is not a quadratic residue
// 0 if num ≡ 0 mod p

if legendre == 1 {
    let sqrt_result = sqrt(&num).expect("should have square root");
    assert_eq!(sqrt_result.square(), num);  // Verify: sqrt^2 ≡ num mod p
}
```

#### Windowed Multi-Exponentiation

For better performance with large exponents:

```rust
use clock_curve_math::{FieldElement, BigInt, field::advanced::multi_exp_windowed};

// Windowed multi-exponentiation trades space for time
let bases = vec![FieldElement::from_u64(2), FieldElement::from_u64(3)];
let exponents = vec![BigInt::from_u64(1000), BigInt::from_u64(2000)];

// Window size w=4: precomputes tables of size 2^w for each base
let result = multi_exp_windowed(&bases, &exponents, 4).expect("computation successful");

// Optimal window size is typically 4-6 for cryptographic field sizes
```

#### Comprehensive Advanced Operations Reference

| Operation | Function | Purpose | Performance |
|-----------|----------|---------|-------------|
| **Batch Inversion** | `batch_inverse()` | Invert multiple elements efficiently | O(n) vs O(n log p) |
| **Batch Inversion (Checked)** | `batch_inverse_checked()` | Batch inversion with error handling | O(n) vs O(n log p) |
| **Small Batch Inversion** | `batch_inverse_small()` | Optimized for small arrays | O(n) |
| **Multi-Exponentiation** | `multi_exp()` | ∏ bases[i]^exponents[i] | O(n × bit_length) |
| **Multi-Exponentiation (Checked)** | `multi_exp_checked()` | Multi-exp with validation | O(n × bit_length) |
| **Windowed Multi-Exponentiation** | `multi_exp_windowed()` | Multi-exp with window optimization | O(n × bit_length / w) |
| **Legendre Symbol** | `legendre_symbol()` | Quadratic residue test | O(log p) |
| **Modular Square Root** | `sqrt()` | Square root in finite field | O(log³ p) |

##### When to Use Each Operation

- **Use `batch_inverse()`** when computing many modular inverses simultaneously
- **Use `multi_exp()`** for cryptographic protocols like signature verification
- **Use `sqrt()`** for operations requiring square roots (e.g., some signature schemes)
- **Use `legendre_symbol()`** to test if elements are quadratic residues
- **Use windowed variants** when exponents are large (>256 bits)

## Architecture

```
clock-curve-math
├── ct/           # Constant-time operations and verification
├── bigint/       # Big integer arithmetic
├── montgomery/   # Montgomery reduction
├── field/        # FieldElement (mod p)
├── scalar/       # Scalar (mod l)
├── validation.rs # Input validation functions
├── error.rs      # Error handling and MathError enum
└── constants.rs  # Mathematical constants
```

### Constant-Time Guarantees

All cryptographic operations execute in constant time regardless of input values:

- Comparisons use bitwise operations, not branches
- Conditional operations use masking, not `if`/`else`
- Loop iterations are fixed, not data-dependent
- All arithmetic avoids secret-dependent branches

### Montgomery Arithmetic

The library uses Montgomery form internally for efficient modular multiplication:

```rust
// Values are stored in Montgomery representation
let a = FieldElement::from_u64(5);  // Automatically converted to Montgomery form
let b = FieldElement::from_u64(7);
let product = a.mul(&b);            // Montgomery multiplication
```

## Mathematical Constants

### Field Modulus (p)
```
p = 2^255 - 19
  = 57896044618658097711785492504343953926634992332820282019728792003956564819949
```

### Scalar Modulus (l)
```
l = 2^252 + 27742317777372353535851937790883648493
  = 7237005577332262213973186563042994240857116359379907606001950938285454250989
```

## Security Considerations

See [SECURITY.md](SECURITY.md) for comprehensive security documentation including:

- **Constant-Time Guarantees**: All operations execute in constant time
- **Threat Model**: Attack vectors and mitigation strategies
- **Input Validation**: Comprehensive validation prevents invalid states
- **Memory Safety**: No unsafe code, Rust's safety guarantees maintained
- **Security Testing**: Constant-time verification and vulnerability scanning
- **Hardening Measures**: Build and runtime security features

### Constant-Time Verification Tools

For rigorous constant-time verification, use the included SageMath-based analysis tool:

```bash
# Setup the verification environment
./setup_constant_time_verification.sh

# Run constant-time verification
conda activate clock-curve-math-analysis
python verify_constant_time.py
```

This tool performs statistical analysis using SageMath to detect timing variations that could indicate side-channel vulnerabilities. Results are saved to `constant_time_analysis.json` with detailed statistical metrics including confidence intervals, distribution normality tests, and coefficient of variation analysis.

## Testing

Run the full test suite:

```bash
cargo test
```

Run with different backends:

```bash
# Default backend
cargo test

# Custom limbs backend
cargo test --no-default-features --features custom-limbs,alloc
```

### Test Coverage

- **160+ comprehensive tests** covering all functionality including advanced operations
- **Unit tests** for all arithmetic operations (add, sub, mul, square, neg, inv, pow)
- **Advanced operation tests** for batch inversion, multi-exponentiation, square root, Legendre symbol
- **Property-based tests** with randomized inputs verifying algebraic properties
- **Edge case testing** (zero, one, boundary values, large numbers, invalid inputs)
- **Constant-time verification** tests ensuring timing attack resistance
- **Backend compatibility testing** across different feature configurations
- **Error handling validation** for all public APIs
- **Cross-platform testing** for x86_64, aarch64, riscv64, armv7, powerpc64, embedded targets

## Benchmarks

Run performance benchmarks:

```bash
cargo bench
```

Benchmarks cover:
- Arithmetic operations (add, multiply, etc.)
- Montgomery reduction
- Modular exponentiation
- Constant-time verification

## API Reference

Complete API documentation is available at [docs.rs/clock-curve-math](https://docs.rs/clock-curve-math).

### Core Types

| Type | Purpose | Documentation |
|------|---------|---------------|
| [`FieldElement`] | Finite field arithmetic modulo p | [FieldElement docs]https://docs.rs/clock-curve-math/latest/clock_curve_math/field/struct.FieldElement.html |
| [`Scalar`] | Scalar arithmetic modulo l | [Scalar docs]https://docs.rs/clock-curve-math/latest/clock_curve_math/scalar/struct.Scalar.html |
| [`BigInt`] | Big integer arithmetic | [BigInt docs]https://docs.rs/clock-curve-math/latest/clock_curve_math/bigint/struct.BigInt.html |

### Traits

| Trait | Purpose | Documentation |
|-------|---------|---------------|
| [`FieldOps`] | Field element operations | [FieldOps docs]https://docs.rs/clock-curve-math/latest/clock_curve_math/field/trait.FieldOps.html |
| [`ScalarOps`] | Scalar operations | [ScalarOps docs]https://docs.rs/clock-curve-math/latest/clock_curve_math/scalar/trait.ScalarOps.html |
| [`BigIntOps`] | Big integer operations | [BigIntOps docs]https://docs.rs/clock-curve-math/latest/clock_curve_math/bigint/trait.BigIntOps.html |

### Advanced Operations

| Module | Purpose | Documentation |
|--------|---------|---------------|
| `field::advanced` | Batch operations, multi-exp, square root | [Advanced Field docs]https://docs.rs/clock-curve-math/latest/clock_curve_math/field/advanced/index.html |
| `ct` | Constant-time helpers | [CT helpers docs]https://docs.rs/clock-curve-math/latest/clock_curve_math/ct/index.html |
| `montgomery` | Montgomery arithmetic | [Montgomery docs]https://docs.rs/clock-curve-math/latest/clock_curve_math/montgomery/index.html |
| `validation` | Input validation | [Validation docs]https://docs.rs/clock-curve-math/latest/clock_curve_math/validation/index.html |

### Error Handling

| Type | Purpose | Documentation |
|------|---------|---------------|
| [`MathError`] | Cryptographic math errors | [MathError docs]https://docs.rs/clock-curve-math/latest/clock_curve_math/enum.MathError.html |

For local API documentation generation:

```bash
cargo doc --open
```

## Ecosystem Integration

`clock-curve-math` integrates seamlessly with the ClockIn ecosystem:

### Core Dependencies
- **`clock-bigint`**: High-performance BigInt backend (default)
- **`clock-rand`**: Cryptographic random number generation (`rand` feature)

### Optional Integration
- **`serde`**: JSON/binary serialization support
- **Cross-platform**: Tested on x86_64, aarch64, riscv64, armv7, powerpc64

### Integration Testing
Comprehensive ecosystem tests ensure compatibility:
```bash
cargo test --test ecosystem_integration
```

For detailed integration guides, see:
- [ECOSYSTEM_INTEGRATION.md]ECOSYSTEM_INTEGRATION.md - Complete integration guide
- [API_STABILITY_ASSESSMENT.md]API_STABILITY_ASSESSMENT.md - API stability guarantees
- [BACKWARD_COMPATIBILITY_GUARANTEES.md]BACKWARD_COMPATIBILITY_GUARANTEES.md - Compatibility promises

## Contributing

1. Follow the [SPEC.md]SPEC.md specification
2. Ensure constant-time properties are maintained
3. Add comprehensive tests for new functionality
4. Update documentation for API changes

## License

Licensed under either of:
- Apache License, Version 2.0 ([LICENSE-APACHE]LICENSE-APACHE)
- MIT License ([LICENSE-MIT]LICENSE-MIT)

at your option.

## Changelog

See [CHANGELOG.md](CHANGELOG.md) for detailed release notes and version history.

## References

- [Ed25519 specification (RFC 8032)]https://tools.ietf.org/html/rfc8032
- [Curve25519 specification]https://cr.yp.to/ecdh/curve25519-20060209.pdf
- [Montgomery, P. L. "Modular multiplication without trial division" (1985)]https://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777282-X/S0025-5718-1985-0777282-X.pdf