clippy_lints 0.0.155

A bunch of helpful lints to avoid common pitfalls in Rust
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
use reexport::*;
use rustc::hir;
use rustc::hir::*;
use rustc::hir::intravisit::{FnKind, Visitor, walk_ty, NestedVisitorMap};
use rustc::lint::*;
use rustc::ty::{self, Ty, TyCtxt};
use rustc::ty::subst::Substs;
use std::cmp::Ordering;
use syntax::ast::{IntTy, UintTy, FloatTy};
use syntax::attr::IntType;
use syntax::codemap::Span;
use utils::{comparisons, higher, in_external_macro, in_macro, match_def_path, snippet, span_help_and_lint, span_lint,
            span_lint_and_sugg, opt_def_id, last_path_segment, type_size, match_path};
use utils::paths;

/// Handles all the linting of funky types
#[allow(missing_copy_implementations)]
pub struct TypePass;

/// **What it does:** Checks for use of `Box<Vec<_>>` anywhere in the code.
///
/// **Why is this bad?** `Vec` already keeps its contents in a separate area on
/// the heap. So if you `Box` it, you just add another level of indirection
/// without any benefit whatsoever.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// struct X {
///     values: Box<Vec<Foo>>,
/// }
/// ```
declare_lint! {
    pub BOX_VEC,
    Warn,
    "usage of `Box<Vec<T>>`, vector elements are already on the heap"
}

/// **What it does:** Checks for usage of any `LinkedList`, suggesting to use a
/// `Vec` or a `VecDeque` (formerly called `RingBuf`).
///
/// **Why is this bad?** Gankro says:
///
/// > The TL;DR of `LinkedList` is that it's built on a massive amount of
/// pointers and indirection.
/// > It wastes memory, it has terrible cache locality, and is all-around slow.
/// `RingBuf`, while
/// > "only" amortized for push/pop, should be faster in the general case for
/// almost every possible
/// > workload, and isn't even amortized at all if you can predict the capacity
/// you need.
/// >
/// > `LinkedList`s are only really good if you're doing a lot of merging or
/// splitting of lists.
/// > This is because they can just mangle some pointers instead of actually
/// copying the data. Even
/// > if you're doing a lot of insertion in the middle of the list, `RingBuf`
/// can still be better
/// > because of how expensive it is to seek to the middle of a `LinkedList`.
///
/// **Known problems:** False positives – the instances where using a
/// `LinkedList` makes sense are few and far between, but they can still happen.
///
/// **Example:**
/// ```rust
/// let x = LinkedList::new();
/// ```
declare_lint! {
    pub LINKEDLIST,
    Warn,
    "usage of LinkedList, usually a vector is faster, or a more specialized data \
     structure like a VecDeque"
}

/// **What it does:** Checks for use of `&Box<T>` anywhere in the code.
///
/// **Why is this bad?** Any `&Box<T>` can also be a `&T`, which is more
/// general.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// fn foo(bar: &Box<T>) { ... }
/// ```
declare_lint! {
    pub BORROWED_BOX,
    Warn,
    "a borrow of a boxed type"
}

impl LintPass for TypePass {
    fn get_lints(&self) -> LintArray {
        lint_array!(BOX_VEC, LINKEDLIST, BORROWED_BOX)
    }
}

impl<'a, 'tcx> LateLintPass<'a, 'tcx> for TypePass {
    fn check_fn(&mut self, cx: &LateContext, _: FnKind, decl: &FnDecl, _: &Body, _: Span, id: NodeId) {
        // skip trait implementations, see #605
        if let Some(map::NodeItem(item)) = cx.tcx.hir.find(cx.tcx.hir.get_parent(id)) {
            if let ItemImpl(_, _, _, _, Some(..), _, _) = item.node {
                return;
            }
        }

        check_fn_decl(cx, decl);
    }

    fn check_struct_field(&mut self, cx: &LateContext, field: &StructField) {
        check_ty(cx, &field.ty, false);
    }

    fn check_trait_item(&mut self, cx: &LateContext, item: &TraitItem) {
        match item.node {
            TraitItemKind::Const(ref ty, _) |
            TraitItemKind::Type(_, Some(ref ty)) => check_ty(cx, ty, false),
            TraitItemKind::Method(ref sig, _) => check_fn_decl(cx, &sig.decl),
            _ => (),
        }
    }

    fn check_local(&mut self, cx: &LateContext, local: &Local) {
        if let Some(ref ty) = local.ty {
            check_ty(cx, ty, true);
        }
    }
}

fn check_fn_decl(cx: &LateContext, decl: &FnDecl) {
    for input in &decl.inputs {
        check_ty(cx, input, false);
    }

    if let FunctionRetTy::Return(ref ty) = decl.output {
        check_ty(cx, ty, false);
    }
}

/// Recursively check for `TypePass` lints in the given type. Stop at the first
/// lint found.
///
/// The parameter `is_local` distinguishes the context of the type; types from
/// local bindings should only be checked for the `BORROWED_BOX` lint.
fn check_ty(cx: &LateContext, ast_ty: &hir::Ty, is_local: bool) {
    if in_macro(ast_ty.span) {
        return;
    }
    match ast_ty.node {
        TyPath(ref qpath) if !is_local => {
            let hir_id = cx.tcx.hir.node_to_hir_id(ast_ty.id);
            let def = cx.tables.qpath_def(qpath, hir_id);
            if let Some(def_id) = opt_def_id(def) {
                if Some(def_id) == cx.tcx.lang_items.owned_box() {
                    let last = last_path_segment(qpath);
                    if_let_chain! {[
                        !last.parameters.parenthesized,
                        let Some(vec) = last.parameters.types.get(0),
                        let TyPath(ref qpath) = vec.node,
                        let Some(did) = opt_def_id(cx.tables.qpath_def(qpath, cx.tcx.hir.node_to_hir_id(vec.id))),
                        match_def_path(cx.tcx, did, &paths::VEC),
                    ], {
                        span_help_and_lint(cx,
                                           BOX_VEC,
                                           ast_ty.span,
                                           "you seem to be trying to use `Box<Vec<T>>`. Consider using just `Vec<T>`",
                                           "`Vec<T>` is already on the heap, `Box<Vec<T>>` makes an extra allocation.");
                        return; // don't recurse into the type
                    }}
                } else if match_def_path(cx.tcx, def_id, &paths::LINKED_LIST) {
                    span_help_and_lint(
                        cx,
                        LINKEDLIST,
                        ast_ty.span,
                        "I see you're using a LinkedList! Perhaps you meant some other data structure?",
                        "a VecDeque might work",
                    );
                    return; // don't recurse into the type
                }
            }
            match *qpath {
                QPath::Resolved(Some(ref ty), ref p) => {
                    check_ty(cx, ty, is_local);
                    for ty in p.segments.iter().flat_map(|seg| seg.parameters.types.iter()) {
                        check_ty(cx, ty, is_local);
                    }
                },
                QPath::Resolved(None, ref p) => {
                    for ty in p.segments.iter().flat_map(|seg| seg.parameters.types.iter()) {
                        check_ty(cx, ty, is_local);
                    }
                },
                QPath::TypeRelative(ref ty, ref seg) => {
                    check_ty(cx, ty, is_local);
                    for ty in seg.parameters.types.iter() {
                        check_ty(cx, ty, is_local);
                    }
                },
            }
        },
        TyRptr(ref lt, MutTy { ref ty, ref mutbl }) => {
            match ty.node {
                TyPath(ref qpath) => {
                    let hir_id = cx.tcx.hir.node_to_hir_id(ty.id);
                    let def = cx.tables.qpath_def(qpath, hir_id);
                    if_let_chain! {[
                        let Some(def_id) = opt_def_id(def),
                        Some(def_id) == cx.tcx.lang_items.owned_box(),
                        let QPath::Resolved(None, ref path) = *qpath,
                        let [ref bx] = *path.segments,
                        !bx.parameters.parenthesized,
                        let [ref inner] = *bx.parameters.types
                    ], {
                        if is_any_trait(inner) {
                            // Ignore `Box<Any>` types, see #1884 for details.
                            return;
                        }

                        let ltopt = if lt.is_elided() {
                            "".to_owned()
                        } else {
                            format!("{} ", lt.name.as_str())
                        };
                        let mutopt = if *mutbl == Mutability::MutMutable {
                            "mut "
                        } else {
                            ""
                        };
                        span_lint_and_sugg(cx,
                            BORROWED_BOX,
                            ast_ty.span,
                            "you seem to be trying to use `&Box<T>`. Consider using just `&T`",
                            "try",
                            format!("&{}{}{}", ltopt, mutopt, &snippet(cx, inner.span, ".."))
                        );
                        return; // don't recurse into the type
                    }};
                    check_ty(cx, ty, is_local);
                },
                _ => check_ty(cx, ty, is_local),
            }
        },
        // recurse
        TySlice(ref ty) |
        TyArray(ref ty, _) |
        TyPtr(MutTy { ref ty, .. }) => check_ty(cx, ty, is_local),
        TyTup(ref tys) => {
            for ty in tys {
                check_ty(cx, ty, is_local);
            }
        },
        _ => {},
    }
}

// Returns true if given type is `Any` trait.
fn is_any_trait(t: &hir::Ty) -> bool {
    if_let_chain! {[
        let TyTraitObject(ref traits, _) = t.node,
        traits.len() >= 1,
        // Only Send/Sync can be used as additional traits, so it is enough to
        // check only the first trait.
        match_path(&traits[0].trait_ref.path, &paths::ANY_TRAIT)
    ], {
        return true;
    }}

    false
}

#[allow(missing_copy_implementations)]
pub struct LetPass;

/// **What it does:** Checks for binding a unit value.
///
/// **Why is this bad?** A unit value cannot usefully be used anywhere. So
/// binding one is kind of pointless.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// let x = { 1; };
/// ```
declare_lint! {
    pub LET_UNIT_VALUE,
    Warn,
    "creating a let binding to a value of unit type, which usually can't be used afterwards"
}

fn check_let_unit(cx: &LateContext, decl: &Decl) {
    if let DeclLocal(ref local) = decl.node {
        match cx.tables.pat_ty(&local.pat).sty {
            ty::TyTuple(slice, _) if slice.is_empty() => {
                if in_external_macro(cx, decl.span) || in_macro(local.pat.span) {
                    return;
                }
                if higher::is_from_for_desugar(decl) {
                    return;
                }
                span_lint(
                    cx,
                    LET_UNIT_VALUE,
                    decl.span,
                    &format!(
                        "this let-binding has unit value. Consider omitting `let {} =`",
                        snippet(cx, local.pat.span, "..")
                    ),
                );
            },
            _ => (),
        }
    }
}

impl LintPass for LetPass {
    fn get_lints(&self) -> LintArray {
        lint_array!(LET_UNIT_VALUE)
    }
}

impl<'a, 'tcx> LateLintPass<'a, 'tcx> for LetPass {
    fn check_decl(&mut self, cx: &LateContext<'a, 'tcx>, decl: &'tcx Decl) {
        check_let_unit(cx, decl)
    }
}

/// **What it does:** Checks for comparisons to unit.
///
/// **Why is this bad?** Unit is always equal to itself, and thus is just a
/// clumsily written constant. Mostly this happens when someone accidentally
/// adds semicolons at the end of the operands.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// if { foo(); } == { bar(); } { baz(); }
/// ```
/// is equal to
/// ```rust
/// { foo(); bar(); baz(); }
/// ```
declare_lint! {
    pub UNIT_CMP,
    Warn,
    "comparing unit values"
}

#[allow(missing_copy_implementations)]
pub struct UnitCmp;

impl LintPass for UnitCmp {
    fn get_lints(&self) -> LintArray {
        lint_array!(UNIT_CMP)
    }
}

impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UnitCmp {
    fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr) {
        if in_macro(expr.span) {
            return;
        }
        if let ExprBinary(ref cmp, ref left, _) = expr.node {
            let op = cmp.node;
            if op.is_comparison() {
                match cx.tables.expr_ty(left).sty {
                    ty::TyTuple(slice, _) if slice.is_empty() => {
                        let result = match op {
                            BiEq | BiLe | BiGe => "true",
                            _ => "false",
                        };
                        span_lint(
                            cx,
                            UNIT_CMP,
                            expr.span,
                            &format!(
                                "{}-comparison of unit values detected. This will always be {}",
                                op.as_str(),
                                result
                            ),
                        );
                    },
                    _ => (),
                }
            }
        }
    }
}

pub struct CastPass;

/// **What it does:** Checks for casts from any numerical to a float type where
/// the receiving type cannot store all values from the original type without
/// rounding errors. This possible rounding is to be expected, so this lint is
/// `Allow` by default.
///
/// Basically, this warns on casting any integer with 32 or more bits to `f32`
/// or any 64-bit integer to `f64`.
///
/// **Why is this bad?** It's not bad at all. But in some applications it can be
/// helpful to know where precision loss can take place. This lint can help find
/// those places in the code.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// let x = u64::MAX; x as f64
/// ```
declare_lint! {
    pub CAST_PRECISION_LOSS,
    Allow,
    "casts that cause loss of precision, e.g. `x as f32` where `x: u64`"
}

/// **What it does:** Checks for casts from a signed to an unsigned numerical
/// type. In this case, negative values wrap around to large positive values,
/// which can be quite surprising in practice. However, as the cast works as
/// defined, this lint is `Allow` by default.
///
/// **Why is this bad?** Possibly surprising results. You can activate this lint
/// as a one-time check to see where numerical wrapping can arise.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// let y: i8 = -1;
/// y as u128  // will return 18446744073709551615
/// ```
declare_lint! {
    pub CAST_SIGN_LOSS,
    Allow,
    "casts from signed types to unsigned types, e.g. `x as u32` where `x: i32`"
}

/// **What it does:** Checks for on casts between numerical types that may
/// truncate large values. This is expected behavior, so the cast is `Allow` by
/// default.
///
/// **Why is this bad?** In some problem domains, it is good practice to avoid
/// truncation. This lint can be activated to help assess where additional
/// checks could be beneficial.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// fn as_u8(x: u64) -> u8 { x as u8 }
/// ```
declare_lint! {
    pub CAST_POSSIBLE_TRUNCATION,
    Allow,
    "casts that may cause truncation of the value, e.g. `x as u8` where `x: u32`, \
     or `x as i32` where `x: f32`"
}

/// **What it does:** Checks for casts from an unsigned type to a signed type of
/// the same size. Performing such a cast is a 'no-op' for the compiler,
/// i.e. nothing is changed at the bit level, and the binary representation of
/// the value is reinterpreted. This can cause wrapping if the value is too big
/// for the target signed type. However, the cast works as defined, so this lint
/// is `Allow` by default.
///
/// **Why is this bad?** While such a cast is not bad in itself, the results can
/// be surprising when this is not the intended behavior, as demonstrated by the
/// example below.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// u32::MAX as i32  // will yield a value of `-1`
/// ```
declare_lint! {
    pub CAST_POSSIBLE_WRAP,
    Allow,
    "casts that may cause wrapping around the value, e.g. `x as i32` where `x: u32` \
     and `x > i32::MAX`"
}

/// **What it does:** Checks for on casts between numerical types that may
/// be replaced by safe conversion functions.
///
/// **Why is this bad?** Rust's `as` keyword will perform many kinds of
/// conversions, including silently lossy conversions. Conversion functions such
/// as `i32::from` will only perform lossless conversions. Using the conversion
/// functions prevents conversions from turning into silent lossy conversions if
/// the types of the input expressions ever change, and make it easier for
/// people reading the code to know that the conversion is lossless.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// fn as_u64(x: u8) -> u64 { x as u64 }
/// ```
declare_lint! {
    pub CAST_LOSSLESS,
    Warn,
    "casts using `as` that are known to be lossless, e.g. `x as u64` where `x: u8`"
}

/// **What it does:** Checks for casts to the same type.
///
/// **Why is this bad?** It's just unnecessary.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// let _ = 2i32 as i32
/// ```
declare_lint! {
    pub UNNECESSARY_CAST,
    Warn,
    "cast to the same type, e.g. `x as i32` where `x: i32`"
}

/// Returns the size in bits of an integral type.
/// Will return 0 if the type is not an int or uint variant
fn int_ty_to_nbits(typ: Ty, tcx: TyCtxt) -> u64 {
    match typ.sty {
        ty::TyInt(i) => match i {
            IntTy::Is => tcx.data_layout.pointer_size.bits(),
            IntTy::I8 => 8,
            IntTy::I16 => 16,
            IntTy::I32 => 32,
            IntTy::I64 => 64,
            IntTy::I128 => 128,
        },
        ty::TyUint(i) => match i {
            UintTy::Us => tcx.data_layout.pointer_size.bits(),
            UintTy::U8 => 8,
            UintTy::U16 => 16,
            UintTy::U32 => 32,
            UintTy::U64 => 64,
            UintTy::U128 => 128,
        },
        _ => 0,
    }
}

fn is_isize_or_usize(typ: Ty) -> bool {
    match typ.sty {
        ty::TyInt(IntTy::Is) |
        ty::TyUint(UintTy::Us) => true,
        _ => false,
    }
}

fn span_precision_loss_lint(cx: &LateContext, expr: &Expr, cast_from: Ty, cast_to_f64: bool) {
    let mantissa_nbits = if cast_to_f64 { 52 } else { 23 };
    let arch_dependent = is_isize_or_usize(cast_from) && cast_to_f64;
    let arch_dependent_str = "on targets with 64-bit wide pointers ";
    let from_nbits_str = if arch_dependent {
        "64".to_owned()
    } else if is_isize_or_usize(cast_from) {
        "32 or 64".to_owned()
    } else {
        int_ty_to_nbits(cast_from, cx.tcx).to_string()
    };
    span_lint(
        cx,
        CAST_PRECISION_LOSS,
        expr.span,
        &format!(
            "casting {0} to {1} causes a loss of precision {2}({0} is {3} bits wide, but {1}'s mantissa \
                        is only {4} bits wide)",
            cast_from,
            if cast_to_f64 { "f64" } else { "f32" },
            if arch_dependent {
                arch_dependent_str
            } else {
                ""
            },
            from_nbits_str,
            mantissa_nbits
        ),
    );
}

fn span_lossless_lint(cx: &LateContext, expr: &Expr, op: &Expr, cast_from: Ty, cast_to: Ty) {
    span_lint_and_sugg(cx,
                       CAST_LOSSLESS,
                       expr.span,
                       &format!("casting {} to {} may become silently lossy if types change",
                               cast_from,
                               cast_to),
                       "try",
                       format!("{}::from({})", cast_to, &snippet(cx, op.span, "..")));
}

enum ArchSuffix {
    _32,
    _64,
    None,
}

fn check_truncation_and_wrapping(cx: &LateContext, expr: &Expr, cast_from: Ty, cast_to: Ty) {
    let arch_64_suffix = " on targets with 64-bit wide pointers";
    let arch_32_suffix = " on targets with 32-bit wide pointers";
    let cast_unsigned_to_signed = !cast_from.is_signed() && cast_to.is_signed();
    let from_nbits = int_ty_to_nbits(cast_from, cx.tcx);
    let to_nbits = int_ty_to_nbits(cast_to, cx.tcx);
    let (span_truncation, suffix_truncation, span_wrap, suffix_wrap) =
        match (is_isize_or_usize(cast_from), is_isize_or_usize(cast_to)) {
            (true, true) | (false, false) => {
                (
                    to_nbits < from_nbits,
                    ArchSuffix::None,
                    to_nbits == from_nbits && cast_unsigned_to_signed,
                    ArchSuffix::None,
                )
            },
            (true, false) => {
                (
                    to_nbits <= 32,
                    if to_nbits == 32 {
                        ArchSuffix::_64
                    } else {
                        ArchSuffix::None
                    },
                    to_nbits <= 32 && cast_unsigned_to_signed,
                    ArchSuffix::_32,
                )
            },
            (false, true) => {
                (
                    from_nbits == 64,
                    ArchSuffix::_32,
                    cast_unsigned_to_signed,
                    if from_nbits == 64 {
                        ArchSuffix::_64
                    } else {
                        ArchSuffix::_32
                    },
                )
            },
        };
    if span_truncation {
        span_lint(
            cx,
            CAST_POSSIBLE_TRUNCATION,
            expr.span,
            &format!(
                "casting {} to {} may truncate the value{}",
                cast_from,
                cast_to,
                match suffix_truncation {
                    ArchSuffix::_32 => arch_32_suffix,
                    ArchSuffix::_64 => arch_64_suffix,
                    ArchSuffix::None => "",
                }
            ),
        );
    }
    if span_wrap {
        span_lint(
            cx,
            CAST_POSSIBLE_WRAP,
            expr.span,
            &format!(
                "casting {} to {} may wrap around the value{}",
                cast_from,
                cast_to,
                match suffix_wrap {
                    ArchSuffix::_32 => arch_32_suffix,
                    ArchSuffix::_64 => arch_64_suffix,
                    ArchSuffix::None => "",
                }
            ),
        );
    }
}

fn check_lossless(cx: &LateContext, expr: &Expr, op: &Expr, cast_from: Ty, cast_to: Ty) {
    let cast_signed_to_unsigned = cast_from.is_signed() && !cast_to.is_signed();
    let from_nbits = int_ty_to_nbits(cast_from, cx.tcx);
    let to_nbits = int_ty_to_nbits(cast_to, cx.tcx);
    if !is_isize_or_usize(cast_from) && !is_isize_or_usize(cast_to) &&
       from_nbits < to_nbits && !cast_signed_to_unsigned {
        span_lossless_lint(cx, expr, op, cast_from, cast_to);
    }
}

impl LintPass for CastPass {
    fn get_lints(&self) -> LintArray {
        lint_array!(
            CAST_PRECISION_LOSS,
            CAST_SIGN_LOSS,
            CAST_POSSIBLE_TRUNCATION,
            CAST_POSSIBLE_WRAP,
            CAST_LOSSLESS,
            UNNECESSARY_CAST
        )
    }
}

impl<'a, 'tcx> LateLintPass<'a, 'tcx> for CastPass {
    fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr) {
        if let ExprCast(ref ex, _) = expr.node {
            let (cast_from, cast_to) = (cx.tables.expr_ty(ex), cx.tables.expr_ty(expr));
            if let ExprLit(ref lit) = ex.node {
                use syntax::ast::{LitKind, LitIntType};
                match lit.node {
                    LitKind::Int(_, LitIntType::Unsuffixed) |
                    LitKind::FloatUnsuffixed(_) => {},
                    _ => {
                        if cast_from.sty == cast_to.sty && !in_external_macro(cx, expr.span) {
                            span_lint(
                                cx,
                                UNNECESSARY_CAST,
                                expr.span,
                                &format!("casting to the same type is unnecessary (`{}` -> `{}`)", cast_from, cast_to),
                            );
                        }
                    },
                }
            }
            if cast_from.is_numeric() && cast_to.is_numeric() && !in_external_macro(cx, expr.span) {
                match (cast_from.is_integral(), cast_to.is_integral()) {
                    (true, false) => {
                        let from_nbits = int_ty_to_nbits(cast_from, cx.tcx);
                        let to_nbits = if let ty::TyFloat(FloatTy::F32) = cast_to.sty {
                            32
                        } else {
                            64
                        };
                        if is_isize_or_usize(cast_from) || from_nbits >= to_nbits {
                            span_precision_loss_lint(cx, expr, cast_from, to_nbits == 64);
                        }
                        if from_nbits < to_nbits {
                            span_lossless_lint(cx, expr, ex, cast_from, cast_to);
                        }
                    },
                    (false, true) => {
                        span_lint(
                            cx,
                            CAST_POSSIBLE_TRUNCATION,
                            expr.span,
                            &format!("casting {} to {} may truncate the value", cast_from, cast_to),
                        );
                        if !cast_to.is_signed() {
                            span_lint(
                                cx,
                                CAST_SIGN_LOSS,
                                expr.span,
                                &format!("casting {} to {} may lose the sign of the value", cast_from, cast_to),
                            );
                        }
                    },
                    (true, true) => {
                        if cast_from.is_signed() && !cast_to.is_signed() {
                            span_lint(
                                cx,
                                CAST_SIGN_LOSS,
                                expr.span,
                                &format!("casting {} to {} may lose the sign of the value", cast_from, cast_to),
                            );
                        }
                        check_truncation_and_wrapping(cx, expr, cast_from, cast_to);
                        check_lossless(cx, expr, ex, cast_from, cast_to);
                    },
                    (false, false) => {
                        if let (&ty::TyFloat(FloatTy::F64), &ty::TyFloat(FloatTy::F32)) =
                            (&cast_from.sty, &cast_to.sty)
                        {
                            span_lint(
                                cx,
                                CAST_POSSIBLE_TRUNCATION,
                                expr.span,
                                "casting f64 to f32 may truncate the value",
                            );
                        }
                        if let (&ty::TyFloat(FloatTy::F32), &ty::TyFloat(FloatTy::F64)) =
                            (&cast_from.sty, &cast_to.sty) {
                            span_lossless_lint(cx, expr, ex, cast_from, cast_to);
                        }
                    },
                }
            }
        }
    }
}

/// **What it does:** Checks for types used in structs, parameters and `let`
/// declarations above a certain complexity threshold.
///
/// **Why is this bad?** Too complex types make the code less readable. Consider
/// using a `type` definition to simplify them.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// struct Foo { inner: Rc<Vec<Vec<Box<(u32, u32, u32, u32)>>>> }
/// ```
declare_lint! {
    pub TYPE_COMPLEXITY,
    Warn,
    "usage of very complex types that might be better factored into `type` definitions"
}

#[allow(missing_copy_implementations)]
pub struct TypeComplexityPass {
    threshold: u64,
}

impl TypeComplexityPass {
    pub fn new(threshold: u64) -> Self {
        Self { threshold: threshold }
    }
}

impl LintPass for TypeComplexityPass {
    fn get_lints(&self) -> LintArray {
        lint_array!(TYPE_COMPLEXITY)
    }
}

impl<'a, 'tcx> LateLintPass<'a, 'tcx> for TypeComplexityPass {
    fn check_fn(
        &mut self,
        cx: &LateContext<'a, 'tcx>,
        _: FnKind<'tcx>,
        decl: &'tcx FnDecl,
        _: &'tcx Body,
        _: Span,
        _: NodeId,
    ) {
        self.check_fndecl(cx, decl);
    }

    fn check_struct_field(&mut self, cx: &LateContext<'a, 'tcx>, field: &'tcx StructField) {
        // enum variants are also struct fields now
        self.check_type(cx, &field.ty);
    }

    fn check_item(&mut self, cx: &LateContext<'a, 'tcx>, item: &'tcx Item) {
        match item.node {
            ItemStatic(ref ty, _, _) |
            ItemConst(ref ty, _) => self.check_type(cx, ty),
            // functions, enums, structs, impls and traits are covered
            _ => (),
        }
    }

    fn check_trait_item(&mut self, cx: &LateContext<'a, 'tcx>, item: &'tcx TraitItem) {
        match item.node {
            TraitItemKind::Const(ref ty, _) |
            TraitItemKind::Type(_, Some(ref ty)) => self.check_type(cx, ty),
            TraitItemKind::Method(MethodSig { ref decl, .. }, TraitMethod::Required(_)) => self.check_fndecl(cx, decl),
            // methods with default impl are covered by check_fn
            _ => (),
        }
    }

    fn check_impl_item(&mut self, cx: &LateContext<'a, 'tcx>, item: &'tcx ImplItem) {
        match item.node {
            ImplItemKind::Const(ref ty, _) |
            ImplItemKind::Type(ref ty) => self.check_type(cx, ty),
            // methods are covered by check_fn
            _ => (),
        }
    }

    fn check_local(&mut self, cx: &LateContext<'a, 'tcx>, local: &'tcx Local) {
        if let Some(ref ty) = local.ty {
            self.check_type(cx, ty);
        }
    }
}

impl<'a, 'tcx> TypeComplexityPass {
    fn check_fndecl(&self, cx: &LateContext<'a, 'tcx>, decl: &'tcx FnDecl) {
        for arg in &decl.inputs {
            self.check_type(cx, arg);
        }
        if let Return(ref ty) = decl.output {
            self.check_type(cx, ty);
        }
    }

    fn check_type(&self, cx: &LateContext, ty: &hir::Ty) {
        if in_macro(ty.span) {
            return;
        }
        let score = {
            let mut visitor = TypeComplexityVisitor { score: 0, nest: 1 };
            visitor.visit_ty(ty);
            visitor.score
        };

        if score > self.threshold {
            span_lint(
                cx,
                TYPE_COMPLEXITY,
                ty.span,
                "very complex type used. Consider factoring parts into `type` definitions",
            );
        }
    }
}

/// Walks a type and assigns a complexity score to it.
struct TypeComplexityVisitor {
    /// total complexity score of the type
    score: u64,
    /// current nesting level
    nest: u64,
}

impl<'tcx> Visitor<'tcx> for TypeComplexityVisitor {
    fn visit_ty(&mut self, ty: &'tcx hir::Ty) {
        let (add_score, sub_nest) = match ty.node {
            // _, &x and *x have only small overhead; don't mess with nesting level
            TyInfer | TyPtr(..) | TyRptr(..) => (1, 0),

            // the "normal" components of a type: named types, arrays/tuples
            TyPath(..) | TySlice(..) | TyTup(..) | TyArray(..) => (10 * self.nest, 1),

            // function types bring a lot of overhead
            TyBareFn(..) => (50 * self.nest, 1),

            TyTraitObject(ref param_bounds, _) => {
                let has_lifetime_parameters = param_bounds.iter().any(
                    |bound| !bound.bound_lifetimes.is_empty(),
                );
                if has_lifetime_parameters {
                    // complex trait bounds like A<'a, 'b>
                    (50 * self.nest, 1)
                } else {
                    // simple trait bounds like A + B
                    (20 * self.nest, 0)
                }
            },

            _ => (0, 0),
        };
        self.score += add_score;
        self.nest += sub_nest;
        walk_ty(self, ty);
        self.nest -= sub_nest;
    }
    fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
        NestedVisitorMap::None
    }
}

/// **What it does:** Checks for expressions where a character literal is cast
/// to `u8` and suggests using a byte literal instead.
///
/// **Why is this bad?** In general, casting values to smaller types is
/// error-prone and should be avoided where possible. In the particular case of
/// converting a character literal to u8, it is easy to avoid by just using a
/// byte literal instead. As an added bonus, `b'a'` is even slightly shorter
/// than `'a' as u8`.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// 'x' as u8
/// ```
declare_lint! {
    pub CHAR_LIT_AS_U8,
    Warn,
    "casting a character literal to u8"
}

pub struct CharLitAsU8;

impl LintPass for CharLitAsU8 {
    fn get_lints(&self) -> LintArray {
        lint_array!(CHAR_LIT_AS_U8)
    }
}

impl<'a, 'tcx> LateLintPass<'a, 'tcx> for CharLitAsU8 {
    fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr) {
        use syntax::ast::{LitKind, UintTy};

        if let ExprCast(ref e, _) = expr.node {
            if let ExprLit(ref l) = e.node {
                if let LitKind::Char(_) = l.node {
                    if ty::TyUint(UintTy::U8) == cx.tables.expr_ty(expr).sty && !in_macro(expr.span) {
                        let msg = "casting character literal to u8. `char`s \
                                   are 4 bytes wide in rust, so casting to u8 \
                                   truncates them";
                        let help = format!("Consider using a byte literal instead:\nb{}", snippet(cx, e.span, "'x'"));
                        span_help_and_lint(cx, CHAR_LIT_AS_U8, expr.span, msg, &help);
                    }
                }
            }
        }
    }
}

/// **What it does:** Checks for comparisons where one side of the relation is
/// either the minimum or maximum value for its type and warns if it involves a
/// case that is always true or always false. Only integer and boolean types are
/// checked.
///
/// **Why is this bad?** An expression like `min <= x` may misleadingly imply
/// that is is possible for `x` to be less than the minimum. Expressions like
/// `max < x` are probably mistakes.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// vec.len() <= 0
/// 100 > std::i32::MAX
/// ```
declare_lint! {
    pub ABSURD_EXTREME_COMPARISONS,
    Warn,
    "a comparison with a maximum or minimum value that is always true or false"
}

pub struct AbsurdExtremeComparisons;

impl LintPass for AbsurdExtremeComparisons {
    fn get_lints(&self) -> LintArray {
        lint_array!(ABSURD_EXTREME_COMPARISONS)
    }
}

enum ExtremeType {
    Minimum,
    Maximum,
}

struct ExtremeExpr<'a> {
    which: ExtremeType,
    expr: &'a Expr,
}

enum AbsurdComparisonResult {
    AlwaysFalse,
    AlwaysTrue,
    InequalityImpossible,
}



fn detect_absurd_comparison<'a>(
    cx: &LateContext,
    op: BinOp_,
    lhs: &'a Expr,
    rhs: &'a Expr,
) -> Option<(ExtremeExpr<'a>, AbsurdComparisonResult)> {
    use types::ExtremeType::*;
    use types::AbsurdComparisonResult::*;
    use utils::comparisons::*;

    // absurd comparison only makes sense on primitive types
    // primitive types don't implement comparison operators with each other
    if cx.tables.expr_ty(lhs) != cx.tables.expr_ty(rhs) {
        return None;
    }

    let normalized = normalize_comparison(op, lhs, rhs);
    let (rel, normalized_lhs, normalized_rhs) = if let Some(val) = normalized {
        val
    } else {
        return None;
    };

    let lx = detect_extreme_expr(cx, normalized_lhs);
    let rx = detect_extreme_expr(cx, normalized_rhs);

    Some(match rel {
        Rel::Lt => {
            match (lx, rx) {
                (Some(l @ ExtremeExpr { which: Maximum, .. }), _) => (l, AlwaysFalse), // max < x
                (_, Some(r @ ExtremeExpr { which: Minimum, .. })) => (r, AlwaysFalse), // x < min
                _ => return None,
            }
        },
        Rel::Le => {
            match (lx, rx) {
                (Some(l @ ExtremeExpr { which: Minimum, .. }), _) => (l, AlwaysTrue), // min <= x
                (Some(l @ ExtremeExpr { which: Maximum, .. }), _) => (l, InequalityImpossible), //max <= x
                (_, Some(r @ ExtremeExpr { which: Minimum, .. })) => (r, InequalityImpossible), // x <= min
                (_, Some(r @ ExtremeExpr { which: Maximum, .. })) => (r, AlwaysTrue), // x <= max
                _ => return None,
            }
        },
        Rel::Ne | Rel::Eq => return None,
    })
}

fn detect_extreme_expr<'a>(cx: &LateContext, expr: &'a Expr) -> Option<ExtremeExpr<'a>> {
    use rustc::middle::const_val::ConstVal::*;
    use rustc_const_math::*;
    use rustc_const_eval::*;
    use types::ExtremeType::*;

    let ty = cx.tables.expr_ty(expr);

    match ty.sty {
        ty::TyBool | ty::TyInt(_) | ty::TyUint(_) => (),
        _ => return None,
    };

    let parent_item = cx.tcx.hir.get_parent(expr.id);
    let parent_def_id = cx.tcx.hir.local_def_id(parent_item);
    let substs = Substs::identity_for_item(cx.tcx, parent_def_id);
    let cv = match ConstContext::new(cx.tcx, cx.param_env.and(substs), cx.tables).eval(expr) {
        Ok(val) => val,
        Err(_) => return None,
    };

    let which = match (&ty.sty, cv) {
        (&ty::TyBool, Bool(false)) |
        (&ty::TyInt(IntTy::Is), Integral(Isize(Is32(::std::i32::MIN)))) |
        (&ty::TyInt(IntTy::Is), Integral(Isize(Is64(::std::i64::MIN)))) |
        (&ty::TyInt(IntTy::I8), Integral(I8(::std::i8::MIN))) |
        (&ty::TyInt(IntTy::I16), Integral(I16(::std::i16::MIN))) |
        (&ty::TyInt(IntTy::I32), Integral(I32(::std::i32::MIN))) |
        (&ty::TyInt(IntTy::I64), Integral(I64(::std::i64::MIN))) |
        (&ty::TyInt(IntTy::I128), Integral(I128(::std::i128::MIN))) |
        (&ty::TyUint(UintTy::Us), Integral(Usize(Us32(::std::u32::MIN)))) |
        (&ty::TyUint(UintTy::Us), Integral(Usize(Us64(::std::u64::MIN)))) |
        (&ty::TyUint(UintTy::U8), Integral(U8(::std::u8::MIN))) |
        (&ty::TyUint(UintTy::U16), Integral(U16(::std::u16::MIN))) |
        (&ty::TyUint(UintTy::U32), Integral(U32(::std::u32::MIN))) |
        (&ty::TyUint(UintTy::U64), Integral(U64(::std::u64::MIN))) |
        (&ty::TyUint(UintTy::U128), Integral(U128(::std::u128::MIN))) => Minimum,

        (&ty::TyBool, Bool(true)) |
        (&ty::TyInt(IntTy::Is), Integral(Isize(Is32(::std::i32::MAX)))) |
        (&ty::TyInt(IntTy::Is), Integral(Isize(Is64(::std::i64::MAX)))) |
        (&ty::TyInt(IntTy::I8), Integral(I8(::std::i8::MAX))) |
        (&ty::TyInt(IntTy::I16), Integral(I16(::std::i16::MAX))) |
        (&ty::TyInt(IntTy::I32), Integral(I32(::std::i32::MAX))) |
        (&ty::TyInt(IntTy::I64), Integral(I64(::std::i64::MAX))) |
        (&ty::TyInt(IntTy::I128), Integral(I128(::std::i128::MAX))) |
        (&ty::TyUint(UintTy::Us), Integral(Usize(Us32(::std::u32::MAX)))) |
        (&ty::TyUint(UintTy::Us), Integral(Usize(Us64(::std::u64::MAX)))) |
        (&ty::TyUint(UintTy::U8), Integral(U8(::std::u8::MAX))) |
        (&ty::TyUint(UintTy::U16), Integral(U16(::std::u16::MAX))) |
        (&ty::TyUint(UintTy::U32), Integral(U32(::std::u32::MAX))) |
        (&ty::TyUint(UintTy::U64), Integral(U64(::std::u64::MAX))) |
        (&ty::TyUint(UintTy::U128), Integral(U128(::std::u128::MAX))) => Maximum,

        _ => return None,
    };
    Some(ExtremeExpr {
        which: which,
        expr: expr,
    })
}

impl<'a, 'tcx> LateLintPass<'a, 'tcx> for AbsurdExtremeComparisons {
    fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr) {
        use types::ExtremeType::*;
        use types::AbsurdComparisonResult::*;

        if let ExprBinary(ref cmp, ref lhs, ref rhs) = expr.node {
            if let Some((culprit, result)) = detect_absurd_comparison(cx, cmp.node, lhs, rhs) {
                if !in_macro(expr.span) {
                    let msg = "this comparison involving the minimum or maximum element for this \
                               type contains a case that is always true or always false";

                    let conclusion = match result {
                        AlwaysFalse => "this comparison is always false".to_owned(),
                        AlwaysTrue => "this comparison is always true".to_owned(),
                        InequalityImpossible => {
                            format!(
                                "the case where the two sides are not equal never occurs, consider using {} == {} \
                                     instead",
                                snippet(cx, lhs.span, "lhs"),
                                snippet(cx, rhs.span, "rhs")
                            )
                        },
                    };

                    let help = format!(
                        "because {} is the {} value for this type, {}",
                        snippet(cx, culprit.expr.span, "x"),
                        match culprit.which {
                            Minimum => "minimum",
                            Maximum => "maximum",
                        },
                        conclusion
                    );

                    span_help_and_lint(cx, ABSURD_EXTREME_COMPARISONS, expr.span, msg, &help);
                }
            }
        }
    }
}

/// **What it does:** Checks for comparisons where the relation is always either
/// true or false, but where one side has been upcast so that the comparison is
/// necessary. Only integer types are checked.
///
/// **Why is this bad?** An expression like `let x : u8 = ...; (x as u32) > 300`
/// will mistakenly imply that it is possible for `x` to be outside the range of
/// `u8`.
///
/// **Known problems:** https://github.com/rust-lang-nursery/rust-clippy/issues/886
///
/// **Example:**
/// ```rust
/// let x : u8 = ...; (x as u32) > 300
/// ```
declare_lint! {
    pub INVALID_UPCAST_COMPARISONS,
    Allow,
    "a comparison involving an upcast which is always true or false"
}

pub struct InvalidUpcastComparisons;

impl LintPass for InvalidUpcastComparisons {
    fn get_lints(&self) -> LintArray {
        lint_array!(INVALID_UPCAST_COMPARISONS)
    }
}

#[derive(Copy, Clone, Debug, Eq)]
enum FullInt {
    S(i128),
    U(u128),
}

impl FullInt {
    #[allow(cast_sign_loss)]
    fn cmp_s_u(s: i128, u: u128) -> Ordering {
        if s < 0 {
            Ordering::Less
        } else if u > (i128::max_value() as u128) {
            Ordering::Greater
        } else {
            (s as u128).cmp(&u)
        }
    }
}

impl PartialEq for FullInt {
    fn eq(&self, other: &Self) -> bool {
        self.partial_cmp(other).expect(
            "partial_cmp only returns Some(_)",
        ) == Ordering::Equal
    }
}

impl PartialOrd for FullInt {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(match (self, other) {
            (&FullInt::S(s), &FullInt::S(o)) => s.cmp(&o),
            (&FullInt::U(s), &FullInt::U(o)) => s.cmp(&o),
            (&FullInt::S(s), &FullInt::U(o)) => Self::cmp_s_u(s, o),
            (&FullInt::U(s), &FullInt::S(o)) => Self::cmp_s_u(o, s).reverse(),
        })
    }
}
impl Ord for FullInt {
    fn cmp(&self, other: &Self) -> Ordering {
        self.partial_cmp(other).expect(
            "partial_cmp for FullInt can never return None",
        )
    }
}


fn numeric_cast_precast_bounds<'a>(cx: &LateContext, expr: &'a Expr) -> Option<(FullInt, FullInt)> {
    use syntax::ast::{IntTy, UintTy};
    use std::*;

    if let ExprCast(ref cast_exp, _) = expr.node {
        let pre_cast_ty = cx.tables.expr_ty(cast_exp);
        let cast_ty = cx.tables.expr_ty(expr);
        // if it's a cast from i32 to u32 wrapping will invalidate all these checks
        if type_size(cx, pre_cast_ty) == type_size(cx, cast_ty) {
            return None;
        }
        match pre_cast_ty.sty {
            ty::TyInt(int_ty) => {
                Some(match int_ty {
                    IntTy::I8 => (FullInt::S(i128::from(i8::min_value())), FullInt::S(i128::from(i8::max_value()))),
                    IntTy::I16 => (FullInt::S(i128::from(i16::min_value())), FullInt::S(i128::from(i16::max_value()))),
                    IntTy::I32 => (FullInt::S(i128::from(i32::min_value())), FullInt::S(i128::from(i32::max_value()))),
                    IntTy::I64 => (FullInt::S(i128::from(i64::min_value())), FullInt::S(i128::from(i64::max_value()))),
                    IntTy::I128 => (FullInt::S(i128::min_value() as i128), FullInt::S(i128::max_value() as i128)),
                    IntTy::Is => (FullInt::S(isize::min_value() as i128), FullInt::S(isize::max_value() as i128)),
                })
            },
            ty::TyUint(uint_ty) => {
                Some(match uint_ty {
                    UintTy::U8 => (FullInt::U(u128::from(u8::min_value())), FullInt::U(u128::from(u8::max_value()))),
                    UintTy::U16 => (FullInt::U(u128::from(u16::min_value())), FullInt::U(u128::from(u16::max_value()))),
                    UintTy::U32 => (FullInt::U(u128::from(u32::min_value())), FullInt::U(u128::from(u32::max_value()))),
                    UintTy::U64 => (FullInt::U(u128::from(u64::min_value())), FullInt::U(u128::from(u64::max_value()))),
                    UintTy::U128 => (FullInt::U(u128::min_value() as u128), FullInt::U(u128::max_value() as u128)),
                    UintTy::Us => (FullInt::U(usize::min_value() as u128), FullInt::U(usize::max_value() as u128)),
                })
            },
            _ => None,
        }
    } else {
        None
    }
}

#[allow(cast_possible_wrap)]
fn node_as_const_fullint(cx: &LateContext, expr: &Expr) -> Option<FullInt> {
    use rustc::middle::const_val::ConstVal::*;
    use rustc_const_eval::ConstContext;

    let parent_item = cx.tcx.hir.get_parent(expr.id);
    let parent_def_id = cx.tcx.hir.local_def_id(parent_item);
    let substs = Substs::identity_for_item(cx.tcx, parent_def_id);
    match ConstContext::new(cx.tcx, cx.param_env.and(substs), cx.tables).eval(expr) {
        Ok(val) => {
            if let Integral(const_int) = val {
                match const_int.int_type() {
                    IntType::SignedInt(_) => Some(FullInt::S(const_int.to_u128_unchecked() as i128)),
                    IntType::UnsignedInt(_) => Some(FullInt::U(const_int.to_u128_unchecked())),
                }
            } else {
                None
            }
        },
        Err(_) => None,
    }
}

fn err_upcast_comparison(cx: &LateContext, span: &Span, expr: &Expr, always: bool) {
    if let ExprCast(ref cast_val, _) = expr.node {
        span_lint(
            cx,
            INVALID_UPCAST_COMPARISONS,
            *span,
            &format!(
                "because of the numeric bounds on `{}` prior to casting, this expression is always {}",
                snippet(cx, cast_val.span, "the expression"),
                if always { "true" } else { "false" },
            ),
        );
    }
}

fn upcast_comparison_bounds_err(
    cx: &LateContext,
    span: &Span,
    rel: comparisons::Rel,
    lhs_bounds: Option<(FullInt, FullInt)>,
    lhs: &Expr,
    rhs: &Expr,
    invert: bool,
) {
    use utils::comparisons::*;

    if let Some((lb, ub)) = lhs_bounds {
        if let Some(norm_rhs_val) = node_as_const_fullint(cx, rhs) {
            if rel == Rel::Eq || rel == Rel::Ne {
                if norm_rhs_val < lb || norm_rhs_val > ub {
                    err_upcast_comparison(cx, span, lhs, rel == Rel::Ne);
                }
            } else if match rel {
                       Rel::Lt => {
                           if invert {
                               norm_rhs_val < lb
                           } else {
                               ub < norm_rhs_val
                           }
                       },
                       Rel::Le => {
                           if invert {
                               norm_rhs_val <= lb
                           } else {
                               ub <= norm_rhs_val
                           }
                       },
                       Rel::Eq | Rel::Ne => unreachable!(),
                   }
            {
                err_upcast_comparison(cx, span, lhs, true)
            } else if match rel {
                       Rel::Lt => {
                           if invert {
                               norm_rhs_val >= ub
                           } else {
                               lb >= norm_rhs_val
                           }
                       },
                       Rel::Le => {
                           if invert {
                               norm_rhs_val > ub
                           } else {
                               lb > norm_rhs_val
                           }
                       },
                       Rel::Eq | Rel::Ne => unreachable!(),
                   }
            {
                err_upcast_comparison(cx, span, lhs, false)
            }
        }
    }
}

impl<'a, 'tcx> LateLintPass<'a, 'tcx> for InvalidUpcastComparisons {
    fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr) {
        if let ExprBinary(ref cmp, ref lhs, ref rhs) = expr.node {

            let normalized = comparisons::normalize_comparison(cmp.node, lhs, rhs);
            let (rel, normalized_lhs, normalized_rhs) = if let Some(val) = normalized {
                val
            } else {
                return;
            };

            let lhs_bounds = numeric_cast_precast_bounds(cx, normalized_lhs);
            let rhs_bounds = numeric_cast_precast_bounds(cx, normalized_rhs);

            upcast_comparison_bounds_err(cx, &expr.span, rel, lhs_bounds, normalized_lhs, normalized_rhs, false);
            upcast_comparison_bounds_err(cx, &expr.span, rel, rhs_bounds, normalized_rhs, normalized_lhs, true);
        }
    }
}