clickhouse-datafusion 0.1.2

High-performance ClickHouse integration for Apache DataFusion with federation support
Documentation

🚇 ClickHouse DataFusion Integration

A high-performance Rust library that integrates ClickHouse with Apache DataFusion, enabling seamless querying across ClickHouse and other data sources.

Crates.io Documentation License: Apache 2.0 Build Status Coverage

Built on clickhouse-arrow for optimal performance and DataFusion for advanced SQL analytics.

Why clickhouse-datafusion?

  • 🚀 High Performance: Built on clickhouse-arrow for optimal data transfer and Arrow format efficiency
  • ⚡ Connection Pooling: clickhouse-arrow provides connection pooling for scalability
  • 🔗 Federation Support: Join ClickHouse tables with other DataFusion sources seamlessly
  • ⛓️ Two-tier Execution: Delegate complexity to ClickHouse leveraging additional optimizations at the edge
  • 🛠️ ClickHouse UDFs: Direct access to ClickHouse functions in DataFusion SQL queries
  • 📊 Advanced Analytics: Support for window functions, CTEs, subqueries, and complex JOINs
  • 🎯 Arrow Native: Native Apache Arrow integration for zero-copy data processing
  • 🔄 Schema Flexibility: Optional schema coercion after fetching data for automatic type compatibility

Quick Start

Add to your Cargo.toml:

[dependencies]
clickhouse-datafusion = "0.1.2"

Basic Usage

use clickhouse_arrow::prelude::ClickHouseEngine;
use clickhouse_datafusion::{ClickHouseBuilder, ClickHouseSessionContext};
use datafusion::prelude::SessionContext;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Create DataFusion context with ClickHouse UDF support
    let ctx = ClickHouseSessionContext::from(SessionContext::new());

    // Build ClickHouse integration
    let clickhouse = ClickHouseBuilder::new("http://localhost:9000")
        .configure_client(|c| c.with_username("clickhouse"))
        .configure_arrow_options(|opts| opts.with_strings_as_strings(true))
        .build_catalog(&ctx, Some("clickhouse"))
        .await?;

    // Define schema for test table
    let schema = Arc::new(Schema::new(vec![Field::new("id", DataType::Int32, false)]));

    // Set schema (database name)
    let clickhouse = clickhouse.with_schema("my_database").await?;

    // Register existing table
    let clickhouse = clickhouse.register_existing_table("my_table").await?;

    // Create a new table on the remote server and get the catalog builder back
    let clickhouse = clickhouse
        .with_new_table("new_table", ClickHouseEngine::MergeTree, schema)
        .create(ctx)
        .await?;

    // Finally build the catalog so the changes take effect (in DataFusion)
    let _catalog = clickhouse.build(&ctx).await?;

    // Query ClickHouse tables
    let df = ctx.sql("SELECT * FROM clickhouse.my_database.my_table LIMIT 10").await?;
    datafusion::arrow::util::pretty::print_batches(&df.collect().await?)?;

    Ok(())
}

With Federation (Cross-DBMS Queries)

use clickhouse_arrow::prelude::ClickHouseEngine;
use clickhouse_datafusion::{ClickHouseBuilder, ClickHouseSessionContext};
use clickhouse_datafusion::federation::FederatedContext;
use datafusion::prelude::SessionContext;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Enable federation for cross-database queries
    let ctx = SessionContext::new().federate();

    // Optionally enable the full ClickHouseSessionContext with ClickHouseQueryPlanner
    //
    // NOTE: Not required, provides a custom QueryPlanner and Analyzer with optional federation.
    let ctx = ClickHouseSessionContext::from(ctx);

    // Configure the underlying connection and initialize the ClickHouse catalog
    let clickhouse = ClickHouseBuilder::new("http://localhost:9000")
        // The default database set on the client is used initially by the returned catalog builder.
        .configure_client(|c| c.with_username("clickhouse").with_default_database("other_db"))
        .build_catalog(&ctx, Some("clickhouse")) // default catalog name
        .await?;

    // Create a table on the remote server and build the catalog (so changes are registered in
    // DataFusion).
    //
    // The 'clickhouse' catalog returned from the above builder can continue to be used to create as
    // many tables as needed. But remember to always `build` the catalog when you want to interact
    // with it via DataFusion queries, using either 'build' or 'build_schema'.
    let _clickhouse_catalog_provider = clickhouse
        // Change the default database from 'other_db' to 'analytics'
        .with_schema("analytics")
        .await?
        // Create users table on the database 'analytics'
        .with_new_table(
            // Table name
            "user_events",
            // Engine - ClickHouseEngine::default() could be used as well.
            ClickHouseEngine::MergeTree,
            // Define the schema for user_events table
            Arc::new(Schema::new(vec![
                Field::new("user_id", DataType::Int32, false),
                Field::new("event_count", DataType::UInt32, false),
            ])),
        )
        // Set `clickhouse_arrow::CreateOptions` for `user_events` table
        .update_create_options(|opts| opts.with_order_by(&["id".into()]))
        // Finally create the table
        .create(ctx)
        .await?
        // And then "build" the catalog, synchronizing the remote schema with DataFusion
        .build(&ctx)
        .await?;

    // Register other data sources (Parquet, CSV, etc.)
    ctx.register_parquet("local_data", "data.parquet", ParquetReadOptions::default()).await?;

    // Join across different data sources
    let df = ctx.sql("
        SELECT ch.user_id,
               ch.event_count,
               local.user_name
        FROM clickhouse.analytics.user_events ch
        JOIN local_data local
          ON ch.user_id = local.user_id
        WHERE ch.event_count > 100
    ").await?;
    datafusion::arrow::util::pretty::print_batches(&df.collect().await?)?;

    Ok(())
}

ClickHouse Functions

Access ClickHouse's powerful functions directly in DataFusion SQL:

Direct Function Calls

-- Mathematical functions
SELECT clickhouse(sigmoid(price), 'Float64') as price_sigmoid FROM products;

-- String functions
SELECT clickhouse(`base64Encode`(name), 'Utf8') as b64_name FROM users;

-- Array functions
SELECT clickhouse(`arrayJoin`(tags), 'Utf8') as individual_tags FROM articles;

Lambda Functions

-- Transform arrays with lambda functions
SELECT
    names,
    clickhouse(`arrayMap`($x, concat($x, '_processed'), names), 'List(Utf8)') as processed_names
FROM user_data;

-- Filter arrays
SELECT clickhouse(`arrayFilter`($x, length($x) > 3, tags), 'List(Utf8)') as long_tags
FROM content;

Complex Analytics

-- Window functions with ClickHouse functions
SELECT
    user_id,
    clickhouse(exp(revenue), 'Float64') as exp_revenue,
    SUM(revenue) OVER (PARTITION BY user_id ORDER BY date) as running_total
FROM sales_data;

-- CTEs with ClickHouse functions
WITH processed_data AS (
    SELECT
        user_id,
        clickhouse(`arrayJoin`(event_types), 'Utf8') as event_type
    FROM user_events
)
SELECT event_type, COUNT(*) as event_count
FROM processed_data
GROUP BY event_type;

Architecture

Core Components

  • ClickHouseBuilder: Main configuration entry point
  • ClickHouseSessionContext: Enhanced DataFusion context with ClickHouse UDF support
  • Table Providers: DataFusion integration layer for ClickHouse tables
  • Federation: Cross-database query support via datafusion-federation
  • UDF System: ClickHouse function integration with intelligent pushdown
  • Function Analyzer: Advanced optimization for UDF placement

Key Features

Connection Pooling

let clickhouse = ClickHouseBuilder::new("http://localhost:9000")
    .configure_pool(|pool| pool.max_size(10))
    .configure_client(|client| client.with_compression(CompressionMethod::LZ4))
    .build_catalog(&ctx, None)
    .await?;

Schema Coercion

let builder = ClickHouseBuilder::new("http://localhost:9000")
    .with_schema_coercion(true) // Enable automatic type coercion
    .build_catalog(&ctx, None)
    .await?;

Schema Management

// Create tables from Arrow schema
let schema = Schema::new(vec![
    Field::new("id", DataType::Int64, false),
    Field::new("name", DataType::Utf8, false),
]);

clickhouse.with_new_table("users", "MergeTree".into(), schema).create(&ctx).await?;

Federation Support

When the federation feature is enabled, clickhouse-datafusion can join ClickHouse tables with other DataFusion sources:

Note: The current release uses datafusion-federation v0.4.7 from crates.io for publishing compatibility. This version has a known issue with UNNEST operations due to an upstream DataFusion bug in expression handling. If you need UNNEST support in federated queries, please track PR #135 for the fix.

-- Join ClickHouse with Parquet files
SELECT
    ch.user_id,
    ch.total_purchases,
    parquet.user_segment
FROM clickhouse.analytics.user_stats ch
JOIN local_parquet.user_segments parquet
    ON ch.user_id = parquet.user_id
WHERE ch.total_purchases > 1000;

-- Federated aggregations
SELECT
    segment,
    AVG(clickhouse(log(total_purchases), 'Float64')) as avg_log_purchases
FROM (
    SELECT
        ch.user_id,
        ch.total_purchases,
        csv.segment
    FROM clickhouse.sales.users ch
    JOIN local_csv.segments csv ON ch.user_id = csv.user_id
)
GROUP BY segment;

Features

  • default: Core functionality with ClickHouse integration
  • federation: Enable cross-database queries
  • cloud: ClickHouse Cloud support
  • test-utils: Testing utilities for development

Development

Running Tests

# All tests with multiple feature combinations
just test

# Specific test types
just test-e2e          # End-to-end tests
just test-federation   # Federation tests
just test-unit         # Unit tests only

# Coverage reports
just coverage          # HTML report
just coverage-lcov     # LCOV for CI

Environment Variables

  • RUST_LOG=debug - Enable debug logging
  • DISABLE_CLEANUP=true - Keep test containers running
  • DISABLE_CLEANUP_ON_ERROR=true - Keep containers on test failure

Examples

See the examples directory for a complete working example:

  • Basic Integration: Simple ClickHouse querying
  • Federation: Cross-database joins
  • UDF Usage: ClickHouse function examples
  • Schema Management: Table creation and management

Contributing

Contributions are welcome! Please see CONTRIBUTING.md for guidelines.

License

Licensed under the Apache License, Version 2.0. See LICENSE for details.