# Claude Code API
[](https://github.com/yourusername/claude-code-api)
[](LICENSE)
[](https://www.rust-lang.org)
[中文文档](README_CN.md) | English
A high-performance Rust implementation of an OpenAI-compatible API gateway for Claude Code CLI. This project provides a RESTful API interface that allows you to interact with Claude Code using the familiar OpenAI API format.
## ✨ Features
- **🔌 OpenAI API Compatibility** - Drop-in replacement for OpenAI API, works with existing OpenAI client libraries
- **🚀 High Performance** - Built with Rust, Axum, and Tokio for exceptional performance
- **💬 Conversation Management** - Built-in session support for multi-turn conversations
- **🖼️ Multimodal Support** - Process images alongside text in your requests
- **⚡ Response Caching** - Intelligent caching system to reduce latency and costs
- **🔧 MCP Support** - Model Context Protocol integration for accessing external tools and services
- **📁 File Access Control** - Configurable file system permissions for secure operations
- **🌊 Streaming Responses** - Real-time streaming support for long-form content
- **🛡️ Robust Error Handling** - Comprehensive error handling with automatic retries
- **📊 Statistics API** - Monitor usage and performance metrics
## 🚀 Quick Start
### Prerequisites
- Rust 1.75 or higher
- [Claude CLI](https://claude.ai/download) installed and configured
- (Optional) MCP servers for extended functionality
### Installation
1. Clone the repository:
```bash
git clone https://github.com/yourusername/claude-code-api.git
cd claude-code-api/rust-claude-code-api
```
2. Build the project:
```bash
cargo build --release
```
3. Start the server:
```bash
./target/release/claude-code-api
```
The API server will start on `http://localhost:8080` by default.
### Quick Test
```bash
curl -X POST http://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "claude-opus-4-20250514",
"messages": [
{"role": "user", "content": "Hello, Claude!"}
]
}'
```
## 📖 Core Features
### 1. OpenAI-Compatible Chat API
```python
import openai
# Configure the client to use Claude Code API
client = openai.OpenAI(
base_url="http://localhost:8080/v1",
api_key="not-needed" # API key is not required
)
response = client.chat.completions.create(
model="claude-opus-4-20250514",
messages=[
{"role": "user", "content": "Write a hello world in Python"}
]
)
print(response.choices[0].message.content)
```
### 2. Conversation Management
Maintain context across multiple requests:
```python
# First request - creates a new conversation
response = client.chat.completions.create(
model="claude-opus-4-20250514",
messages=[
{"role": "user", "content": "My name is Alice"}
]
)
conversation_id = response.conversation_id
# Subsequent request - continues the conversation
response = client.chat.completions.create(
model="claude-opus-4-20250514",
conversation_id=conversation_id,
messages=[
{"role": "user", "content": "What's my name?"}
]
)
# Claude will remember: "Your name is Alice"
```
### 3. Multimodal Support
Process images with text:
```python
response = client.chat.completions.create(
model="claude-opus-4-20250514",
messages=[{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{"type": "image_url", "image_url": {"url": "/path/to/image.png"}}
]
}]
)
```
Supported image formats:
- Local file paths
- HTTP/HTTPS URLs
- Base64 encoded data URLs
### 4. Streaming Responses
```python
stream = client.chat.completions.create(
model="claude-opus-4-20250514",
messages=[{"role": "user", "content": "Write a long story"}],
stream=True
)
for chunk in stream:
if chunk.choices[0].delta.content:
print(chunk.choices[0].delta.content, end="")
```
### 5. MCP (Model Context Protocol)
Enable Claude to access external tools and services:
```bash
# Create MCP configuration
cat > mcp_config.json << EOF
{
"mcpServers": {
"filesystem": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-filesystem", "/allowed/path"]
},
"github": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-github"],
"env": {
"GITHUB_PERSONAL_ACCESS_TOKEN": "your-token"
}
}
}
}
EOF
# Start with MCP support
export CLAUDE_CODE__MCP__ENABLED=true
export CLAUDE_CODE__MCP__CONFIG_FILE="./mcp_config.json"
./target/release/claude-code-api
```
## 🔧 Configuration
### Environment Variables
```bash
# Server configuration
CLAUDE_CODE__SERVER__HOST=0.0.0.0
CLAUDE_CODE__SERVER__PORT=8080
# Claude CLI configuration
CLAUDE_CODE__CLAUDE__COMMAND=claude
CLAUDE_CODE__CLAUDE__TIMEOUT_SECONDS=300
CLAUDE_CODE__CLAUDE__MAX_CONCURRENT_SESSIONS=10
# File access permissions
CLAUDE_CODE__FILE_ACCESS__SKIP_PERMISSIONS=false
CLAUDE_CODE__FILE_ACCESS__ADDITIONAL_DIRS='["/path1", "/path2"]'
# MCP configuration
CLAUDE_CODE__MCP__ENABLED=true
CLAUDE_CODE__MCP__CONFIG_FILE="./mcp_config.json"
CLAUDE_CODE__MCP__STRICT=false
CLAUDE_CODE__MCP__DEBUG=false
# Cache configuration
CLAUDE_CODE__CACHE__ENABLED=true
CLAUDE_CODE__CACHE__MAX_ENTRIES=1000
CLAUDE_CODE__CACHE__TTL_SECONDS=3600
# Conversation management
CLAUDE_CODE__CONVERSATION__MAX_HISTORY_MESSAGES=20
CLAUDE_CODE__CONVERSATION__SESSION_TIMEOUT_MINUTES=30
```
### Configuration File
Create `config/local.toml`:
```toml
[server]
host = "0.0.0.0"
port = 8080
[claude]
command = "claude"
timeout_seconds = 300
max_concurrent_sessions = 10
[file_access]
skip_permissions = false
additional_dirs = ["/Users/me/projects", "/tmp"]
[mcp]
enabled = true
config_file = "./mcp_config.json"
strict = false
debug = false
```
## 📚 API Endpoints
### Chat Completions
- `POST /v1/chat/completions` - Create a chat completion
### Models
- `GET /v1/models` - List available models
### Conversations
- `POST /v1/conversations` - Create a new conversation
- `GET /v1/conversations` - List active conversations
- `GET /v1/conversations/:id` - Get conversation details
### Statistics
- `GET /stats` - Get API usage statistics
### Health Check
- `GET /health` - Check service health
## 🛠️ Advanced Usage
### Using with LangChain
```python
from langchain.chat_models import ChatOpenAI
llm = ChatOpenAI(
base_url="http://localhost:8080/v1",
api_key="not-needed",
model="claude-opus-4-20250514"
)
response = llm.invoke("Explain quantum computing")
print(response.content)
```
### Using with Node.js
```javascript
const OpenAI = require('openai');
const client = new OpenAI({
baseURL: 'http://localhost:8080/v1',
apiKey: 'not-needed'
});
async function chat() {
const response = await client.chat.completions.create({
model: 'claude-opus-4-20250514',
messages: [{ role: 'user', content: 'Hello!' }]
});
console.log(response.choices[0].message.content);
}
```
### Using with curl
```bash
# Basic request
curl -X POST http://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "claude-opus-4-20250514",
"messages": [{"role": "user", "content": "Hello"}]
}'
# With conversation ID
curl -X POST http://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "claude-opus-4-20250514",
"conversation_id": "uuid-here",
"messages": [{"role": "user", "content": "Continue our chat"}]
}'
# With image
curl -X POST http://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "claude-opus-4-20250514",
"messages": [{
"role": "user",
"content": [
{"type": "text", "text": "What is this?"},
{"type": "image_url", "image_url": {"url": "/path/to/image.png"}}
]
}]
}'
```
## 🔒 Security
- File access is controlled through configurable permissions
- MCP servers run in isolated processes
- No API key required (relies on Claude CLI authentication)
- Supports CORS for web applications
- Request ID tracking for audit trails
## 🐛 Troubleshooting
### Common Issues
1. **"Permission denied" errors**
```bash
export CLAUDE_CODE__FILE_ACCESS__SKIP_PERMISSIONS=true
./start_with_permissions.sh
```
2. **MCP servers not working**
```bash
export CLAUDE_CODE__MCP__DEBUG=true
npx -y @modelcontextprotocol/server-filesystem --version
```
3. **High latency on first request**
- This is normal as Claude CLI needs to start up
- Subsequent requests will be faster due to process reuse
## 🤝 Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
1. Fork the repository
2. Create your feature branch (`git checkout -b feature/amazing-feature`)
3. Commit your changes (`git commit -m 'Add some amazing feature'`)
4. Push to the branch (`git push origin feature/amazing-feature`)
5. Open a Pull Request
## 📄 License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## 🙏 Acknowledgments
- Built on top of [Claude Code CLI](https://claude.ai/download)
- Inspired by OpenAI's API design
- Powered by [Axum](https://github.com/tokio-rs/axum) web framework
## 📞 Support
- [Report Issues](https://github.com/yourusername/claude-code-api/issues)
- [Documentation](https://github.com/yourusername/claude-code-api/wiki)
- [Discussions](https://github.com/yourusername/claude-code-api/discussions)
---
Made with ❤️ by the Claude Code API team