1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
#![allow(non_snake_case)]

use crate::algebra::{Adjoint, FloatT, MatrixShape, ShapedMatrix, SparseFormatError, Symmetric};
use std::iter::zip;

/// Sparse matrix in standard Compressed Sparse Column (CSC) format
///
/// __Example usage__ : To construct the 3 x 3 matrix
/// ```text
/// A = [1.  3.  5.]
///     [2.  0.  6.]
///     [0.  4.  7.]
/// ```
/// ```no_run
/// use clarabel::algebra::CscMatrix;
///
/// let A : CscMatrix<f64> = CscMatrix::new(
///    3,                                // m
///    3,                                // n
///    vec![0, 2, 4, 7],                 //colptr
///    vec![0, 1, 0, 2, 0, 1, 2],        //rowval
///    vec![1., 2., 3., 4., 5., 6., 7.], //nzval
///  );
///
/// // optional correctness check
/// assert!(A.check_format().is_ok());
///
/// // the above is equivalent to the following,
/// // which is more convenient for small matrices
/// let A = CscMatrix::from(
///      &[[1.0, 3.0, 5.0],
///        [2.0, 0.0, 6.0],
///        [0.0, 4.0, 7.0]]);
///
/// ```
///

#[derive(Debug, Clone, PartialEq, Eq)]
pub struct CscMatrix<T = f64> {
    /// number of rows
    pub m: usize,
    /// number of columns
    pub n: usize,
    /// CSC format column pointer.   
    ///
    /// Ths field should have length `n+1`. The last entry corresponds
    /// to the the number of nonzeros and should agree with the lengths
    /// of the `rowval` and `nzval` fields.
    pub colptr: Vec<usize>,
    /// vector of row indices
    pub rowval: Vec<usize>,
    /// vector of non-zero matrix elements
    pub nzval: Vec<T>,
}

/// Creates a CscMatrix from a slice of arrays.
///
/// Example:
/// ```
/// use clarabel::algebra::CscMatrix;
/// let A = CscMatrix::from(
///      &[[1.0, 2.0],
///        [3.0, 0.0],
///        [0.0, 4.0]]);
///
impl<'a, I, J, T> From<I> for CscMatrix<T>
where
    I: IntoIterator<Item = J>,
    J: IntoIterator<Item = &'a T>,
    T: FloatT,
{
    #[allow(clippy::needless_range_loop)]
    fn from(rows: I) -> CscMatrix<T> {
        let rows: Vec<Vec<T>> = rows
            .into_iter()
            .map(|r| r.into_iter().copied().collect())
            .collect();

        let m = rows.len();
        let n = rows.iter().map(|r| r.len()).next().unwrap_or(0);

        assert!(rows.iter().all(|r| r.len() == n));
        let nnz = rows.iter().flatten().filter(|&&v| v != T::zero()).count();

        let mut colptr = Vec::with_capacity(n + 1);
        let mut rowval = Vec::with_capacity(nnz);
        let mut nzval = Vec::<T>::with_capacity(nnz);

        colptr.push(0);
        for c in 0..n {
            for r in 0..m {
                let value = rows[r][c];
                if value != T::zero() {
                    rowval.push(r);
                    nzval.push(value);
                }
            }
            colptr.push(nzval.len());
        }

        CscMatrix::<T> {
            m,
            n,
            colptr,
            rowval,
            nzval,
        }
    }
}

impl<T> CscMatrix<T>
where
    T: FloatT,
{
    /// `CscMatrix` constructor.
    ///
    /// # Panics
    /// Makes rudimentary dimensional compatibility checks and panics on
    /// failure.   This constructor does __not__
    /// ensure that rows indices are all in bounds or that data is arranged
    /// such that entries within each column appear in order of increasing
    /// row index.   Responsibility for ensuring these conditions hold
    /// is left to the caller.
    ///

    pub fn new(m: usize, n: usize, colptr: Vec<usize>, rowval: Vec<usize>, nzval: Vec<T>) -> Self {
        assert_eq!(rowval.len(), nzval.len());
        assert_eq!(colptr.len(), n + 1);
        assert_eq!(colptr[n], rowval.len());
        CscMatrix {
            m,
            n,
            colptr,
            rowval,
            nzval,
        }
    }

    /// allocate space for a sparse matrix with `nnz` elements

    pub fn spalloc(size: (usize, usize), nnz: usize) -> Self {
        let (m, n) = size;
        let mut colptr = vec![0; n + 1];
        let rowval = vec![0; nnz];
        let nzval = vec![T::zero(); nnz];
        colptr[n] = nnz;

        CscMatrix::new(m, n, colptr, rowval, nzval)
    }

    /// Sparse matrix of zeros of size `m` x `n`
    pub fn zeros(size: (usize, usize)) -> Self {
        Self::spalloc(size, 0)
    }

    /// Identity matrix of size `n`
    pub fn identity(n: usize) -> Self {
        let colptr = (0usize..=n).collect();
        let rowval = (0usize..n).collect();
        let nzval = vec![T::one(); n];

        CscMatrix::new(n, n, colptr, rowval, nzval)
    }

    /// number of nonzeros
    pub fn nnz(&self) -> usize {
        self.colptr[self.n]
    }

    /// transpose
    pub fn t(&self) -> Adjoint<'_, Self> {
        Adjoint { src: self }
    }

    /// symmetric view
    pub fn sym(&self) -> Symmetric<'_, Self> {
        debug_assert!(self.is_triu());
        Symmetric { src: self }
    }

    /// Check that matrix data is correctly formatted.
    pub fn check_format(&self) -> Result<(), SparseFormatError> {
        if self.rowval.len() != self.nzval.len() {
            return Err(SparseFormatError::IncompatibleDimension);
        }

        if self.colptr.is_empty()
            || (self.colptr.len() - 1) != self.n
            || self.colptr[self.n] != self.rowval.len()
        {
            return Err(SparseFormatError::IncompatibleDimension);
        }

        //check for colptr monotonicity
        if self.colptr.windows(2).any(|c| c[0] > c[1]) {
            return Err(SparseFormatError::BadColptr);
        }

        //check for rowval monotonicity within each column
        for col in 0..self.n {
            let rng = self.colptr[col]..self.colptr[col + 1];
            if self.rowval[rng].windows(2).any(|c| c[0] >= c[1]) {
                return Err(SparseFormatError::BadRowval);
            }
        }
        //check for row values out of bounds
        if !self.rowval.iter().all(|r| r < &self.m) {
            return Err(SparseFormatError::BadRowval);
        }

        Ok(())
    }

    /// Select a subset of the rows of a sparse matrix
    ///
    /// # Panics
    /// Panics if row dimensions are incompatible
    pub fn select_rows(&self, rowidx: &Vec<bool>) -> Self {
        //first check for compatible row dimensions
        assert_eq!(rowidx.len(), self.m);

        //count the number of rows in the reduced matrix and build an
        //index from the logical rowidx to the reduced row number
        let mut rridx = vec![0; self.m];
        let mut mred = 0;
        for (r, is_used) in zip(&mut rridx, rowidx) {
            if *is_used {
                *r = mred;
                mred += 1;
            }
        }

        // count the nonzeros in Ared
        let nzred = self.rowval.iter().filter(|&r| rowidx[*r]).count();

        // Allocate a reduced size A
        let mut Ared = CscMatrix::spalloc((mred, self.n), nzred);

        //populate new matrix
        let mut ptrred = 0;
        for col in 0..self.n {
            Ared.colptr[col] = ptrred;
            for ptr in self.colptr[col]..self.colptr[col + 1] {
                let thisrow = self.rowval[ptr];
                if rowidx[thisrow] {
                    Ared.rowval[ptrred] = rridx[thisrow];
                    Ared.nzval[ptrred] = self.nzval[ptr];
                    ptrred += 1;
                }
            }
            Ared.colptr[Ared.n] = ptrred;
        }

        Ared
    }

    /// Allocates a new matrix containing only entries from the upper triangular part
    pub fn to_triu(&self) -> Self {
        assert_eq!(self.m, self.n);
        let (m, n) = (self.m, self.n);
        let mut colptr = vec![0; n + 1];
        let mut nnz = 0;

        //count the number of entries in the upper triangle
        //and place the totals into colptr

        for col in 0..n {
            //start / stop indices for the current column
            let first = self.colptr[col];
            let last = self.colptr[col + 1];
            let rows = &self.rowval[first..last];

            // number of entries on or above diagonal in this column,
            // shifted by 1 (i.e. colptr keeps a 0 in the first column)
            colptr[col + 1] = rows.iter().filter(|&row| *row <= col).count();
            nnz += colptr[col + 1];
        }

        //allocate and copy the upper triangle entries of
        //each column into the new value vector.
        //NB! : assumes that entries in each column have
        //monotonically increasing row numbers
        let mut rowval = vec![0; nnz];
        let mut nzval = vec![T::zero(); nnz];

        for col in 0..n {
            let ntriu = colptr[col + 1];

            //start / stop indices for the destination
            let fdest = colptr[col];
            let ldest = fdest + ntriu;

            //start / stop indices for the source
            let fsrc = self.colptr[col];
            let lsrc = fsrc + ntriu;

            //copy upper triangle values
            rowval[fdest..ldest].copy_from_slice(&self.rowval[fsrc..lsrc]);
            nzval[fdest..ldest].copy_from_slice(&self.nzval[fsrc..lsrc]);

            //this should now be cumsum of the counts
            colptr[col + 1] = ldest;
        }
        CscMatrix::new(m, n, colptr, rowval, nzval)
    }

    /// True if the matrix is upper triangular
    pub fn is_triu(&self) -> bool {
        // check lower triangle for any structural entries, regardless
        // of the values that may be assigned to them
        for col in 0..self.ncols() {
            //start / stop indices for the current column
            let first = self.colptr[col];
            let last = self.colptr[col + 1];
            let rows = &self.rowval[first..last];

            // number of entries on or above diagonal in this column,
            // shifted by 1 (i.e. colptr keeps a 0 in the first column)
            if rows.iter().any(|&row| row > col) {
                return false;
            }
        }
        true
    }

    /// Returns the value at the given (row,col) index as an Option.
    /// Returns None if the given index is not a structural nonzero.
    ///
    /// # Panics
    /// Panics if the given index is out of bounds.
    pub fn get_entry(&self, idx: (usize, usize)) -> Option<T> {
        let (row, col) = idx;
        assert!(row < self.nrows() && col < self.ncols());

        let first = self.colptr[col];
        let last = self.colptr[col + 1];
        let rows_in_this_column = &self.rowval[first..last];
        match rows_in_this_column.binary_search(&row) {
            Ok(idx) => Some(self.nzval[first + idx]),
            Err(_) => None,
        }
    }
}

impl<T> ShapedMatrix for CscMatrix<T> {
    fn nrows(&self) -> usize {
        self.m
    }
    fn ncols(&self) -> usize {
        self.n
    }
    fn size(&self) -> (usize, usize) {
        (self.m, self.n)
    }
    fn shape(&self) -> MatrixShape {
        MatrixShape::N
    }
    fn is_square(&self) -> bool {
        self.m == self.n
    }
}

/// Make a concrete [CscMatrix] from its [Adjoint].   This operation will
/// allocate a new matrix and copy the data from the adjoint.
///
/// __Example usage__ : To construct the transpose of a 3 x 3 matrix:
/// ```text
/// A = [1.,  0.,  0.]
///     [2.,  4.,  0.]
///     [3.,  5.,  6.]
///```
/// ```no_run
/// use clarabel::algebra::CscMatrix;
///
/// let A : CscMatrix = (&[
///     [1., 0., 0.], //
///     [2., 4., 0.], //
///     [3., 5., 6.],
/// ]).into();
///
/// let At = A.t();  //Adjoint form.   Does not copy anything.
///
/// let B : CscMatrix = At.into(); //Concrete form.  Allocates and copies.
///
/// assert_eq!(A, B);
///
/// ```
impl<'a, T> From<Adjoint<'a, CscMatrix<T>>> for CscMatrix<T>
where
    T: FloatT,
{
    fn from(M: Adjoint<'a, CscMatrix<T>>) -> CscMatrix<T> {
        let src = M.src;

        let (m, n) = (src.n, src.m);
        let mut A = CscMatrix::spalloc((m, n), src.nnz());

        //make dummy mapping indices since we don't care
        //where the entries go
        let mut amap = vec![0usize; src.nnz()];

        A.colcount_block(src, 0, MatrixShape::T);
        A.colcount_to_colptr();
        A.fill_block(src, &mut amap, 0, 0, MatrixShape::T);
        A.backshift_colptrs();
        A
    }
}

#[test]
fn test_csc_from_slice_of_arrays() {
    let A = CscMatrix::new(
        3,                    // m
        2,                    // n
        vec![0, 2, 4],        // colptr
        vec![0, 1, 0, 2],     // rowval
        vec![1., 3., 2., 4.], // nzval
    );

    let B = CscMatrix::from(&[
        [1., 2.], //
        [3., 0.], //
        [0., 4.],
    ]); //

    let C: CscMatrix = (&[
        [1., 2.], //
        [3., 0.], //
        [0., 4.],
    ])
        .into();

    assert_eq!(A, B);
    assert_eq!(A, C);
}

#[test]
fn test_csc_get_entry() {
    let A = CscMatrix::from(&[
        [0.0, 4.0, 0.0, 0.0, 12.0],
        [1.0, 5.0, 0.0, 0.0, 0.0],
        [0.0, 6.0, 0.0, 0.0, 13.0],
        [2.0, 7.0, 10.0, 0.0, 0.0],
        [0.0, 8.0, 11.0, 0.0, 14.0],
        [3.0, 9.0, 0.0, 0.0, 0.0],
    ]);

    assert_eq!(A.get_entry((1, 0)), Some(1.));
    assert_eq!(A.get_entry((5, 0)), Some(3.));
    assert_eq!(A.get_entry((0, 1)), Some(4.));
    assert_eq!(A.get_entry((3, 1)), Some(7.));
    assert_eq!(A.get_entry((5, 1)), Some(9.));
    assert_eq!(A.get_entry((3, 2)), Some(10.));
    assert_eq!(A.get_entry((4, 2)), Some(11.));
    assert_eq!(A.get_entry((4, 4)), Some(14.));

    assert_eq!(A.get_entry((0, 0)), None);
    assert_eq!(A.get_entry((4, 0)), None);
    assert_eq!(A.get_entry((2, 2)), None);
    assert_eq!(A.get_entry((1, 3)), None);
    assert_eq!(A.get_entry((2, 3)), None);
    assert_eq!(A.get_entry((4, 3)), None);
    assert_eq!(A.get_entry((3, 4)), None);
}

#[test]
fn test_adjoint_into() {
    let A: CscMatrix = (&[
        [1., 0., 0.], //
        [2., 4., 0.], //
        [3., 5., 6.],
    ])
        .into();

    let T: CscMatrix = (&[
        [1., 2., 3.], //
        [0., 4., 5.], //
        [0., 0., 6.],
    ])
        .into();

    let B: CscMatrix = A.t().into(); //Concrete form.  Allocates and copies.

    assert_eq!(B, T);
}