1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
//! The Playfair cipher is the first bigram substitution cipher.
//! Invented in 1854 by Charles Wheatstone, its name honors Lord
//! Lyon Playfair for promoting its use.
//!
//! [Reference](https://en.wikipedia.org/wiki/Playfair_cipher)
//!
//! The Playfair cipher operates on a 5x5 table. The key, omitting repeated
//! characters, is written from left to right starting on the first row
//! of the table. Other key layout patterns in the table can be used
//! but are less common. Note that a letter must either be omitted
//! (typically 'Q') or two letters can occupy the same space (I=J).
//! This implementation uses the *latter* design, replacing all
//! encountered 'J' characters with 'I'.
//!
use common::{alphabet, alphabet::Alphabet, cipher::Cipher, keygen::PlayfairTable};

/// The character inserted to avoid repeated characters or
/// to complete an odd-length bigram
const PLAYFAIR_FIX_CHAR: char = 'X';

/// A Playfair cipher.
///
/// This struct is created by the `new()` method. See its documentation for more.
pub struct Playfair {
    /// The Playfair key table (5x5)
    table: PlayfairTable,
}

impl Cipher for Playfair {
    type Key = String;
    type Algorithm = Playfair;

    /// Initialize a Playfair cipher.
    ///
    /// # Warning
    /// * The 5x5 key table requires any 'J' characters in the key
    /// to be substituted with 'I' characters (I = J).
    fn new(key: Self::Key) -> Result<Playfair, &'static str> {
        let key_table = PlayfairTable::new(&key)?;

        Ok(Playfair { table: key_table })
    }

    /// Encrypt a message with the Playfair cipher.
    ///
    /// # Examples
    ///
    /// Basic Usage:
    ///
    /// ```
    /// use cipher_crypt::{Cipher, Playfair};
    ///
    /// let c = Playfair::new("playfair example".to_string()).unwrap();
    /// assert_eq!(
    ///     c.encrypt("Hide the gold in the tree stump").unwrap(),
    ///     "BMODZBXDNABEKUDMUIXMMOUVIF"
    /// );
    /// ```
    ///
    /// # Warning
    /// * The 5x5 key table requires any 'J' characters in the message
    /// to be substituted with 'I' characters (i.e. I = J).
    /// * The resulting ciphertext will be fully uppercase with no whitespace.
    ///
    /// # Errors
    /// * Messages must contain alphabetic characters only.
    fn encrypt(&self, message: &str) -> Result<String, &'static str> {
        let message: String = message.split_whitespace().collect();
        if !alphabet::STANDARD.is_valid(message.as_str()) {
            return Err("Message must only consist of alphabetic characters");
        }

        // Handles Rule 1 (Bigrams)
        let bmsg = bigram(message.to_uppercase())?;

        apply_rules(bmsg, &self.table, |v, first, second| {
            (v[(first + 1) % 5], v[(second + 1) % 5])
        })
    }

    /// Decrypt a message with the Playfair cipher.
    ///
    /// # Examples
    ///
    /// Basic Usage:
    ///
    /// ```
    /// use cipher_crypt::{Cipher, Playfair};
    ///
    /// let c = Playfair::new("playfair example".to_string()).unwrap();
    /// assert_eq!(
    ///     c.decrypt("BMODZBXDNABEKUDMUIXMMOUVIF").unwrap(),
    ///     "HIDETHEGOLDINTHETREXESTUMP"
    /// );
    ///
    /// ```
    ///
    /// # Warning
    /// * The 5x5 key table requires any 'J' characters in the message
    /// to be substituted with 'I' characters (i.e. I = J).
    /// * The resulting plaintext will be fully uppercase with no whitespace.
    /// * The resulting plaintext may contain added 'X' pad characters.
    ///
    /// # Errors
    /// * Messages must contain only alphabetic characters.
    fn decrypt(&self, message: &str) -> Result<String, &'static str> {
        let message: String = message.split_whitespace().collect();
        if !alphabet::STANDARD.is_valid(message.as_str()) {
            return Err("Message must only consist of alphabetic characters");
        }
        // Handles Rule 1
        let bmsg = bigram(message.to_uppercase())?;

        apply_rules(bmsg, &self.table, |v, first, second| {
            (v[(first - 1) % 5], v[(second - 1) % 5])
        })
    }
}

// PLayfair Bigram
type Bigram = (char, char);

/// Apply rule 1 (bigrams).
///
/// # Rule 1
///
/// If both letters are the same (or only one letter is left), add an 'X'
/// after the first letter. Encrypt the new pair and continue. Some variants
/// of Playfair use 'Q' instead of 'X', but any letter, itself uncommon as a
/// repeated pair, will do.
///
/// [Reference](https://en.wikipedia.org/wiki/Playfair_cipher#Description)
///
/// # Errors
/// * Returns an error if the message contains non-alpha characters.
fn bigram<S: AsRef<str>>(message: S) -> Result<Vec<Bigram>, &'static str> {
    if message.as_ref().contains(char::is_whitespace) {
        return Err("Message contains whitespace");
    }
    if !alphabet::STANDARD.is_valid(message.as_ref()) {
        return Err("Message must only consist of alphabetic characters");
    }

    let mut iter = message.as_ref().chars().peekable();
    let mut bigrams: Vec<Bigram> = Vec::new();
    loop {
        let first: char;
        if let Some(x) = iter.next() {
            first = x;
        } else {
            // No characters remaining -- done
            break;
        }

        // Handle repeats
        if let Some(y) = iter.peek() {
            if *y == first {
                bigrams.push((first, PLAYFAIR_FIX_CHAR));
                continue;
            }
        }

        if let Some(y) = iter.next() {
            bigrams.push((first, y));
        } else {
            // Handle odd number of characters
            bigrams.push((first, PLAYFAIR_FIX_CHAR));
        }
    }
    Ok(bigrams)
}

/// Apply rule 2 (Row) or rule 3 (Column).
///
/// # Rule 2
///
/// If the letters appear on the same row of your table, replace them
/// with the letters to their immediate right respectively (wrapping
/// around to the left side of the row if a letter in the original pair
/// was on the right side of the row).
///
/// # Rule 3
///
/// If the letters appear on the same column of your table, replace them
/// with the letters immediately below respectively (wrapping around to the
/// top side of the column if a letter in the original pair was on the
/// bottom side of the column).
///
/// [Reference](https://en.wikipedia.org/wiki/Playfair_cipher#Description)
fn apply_row_col<F>(b: Bigram, row_col: &[String; 5], shift: &F) -> Option<Bigram>
where
    F: Fn(Vec<char>, usize, usize) -> Bigram,
{
    for rc in row_col.iter() {
        if let Some(first) = rc.find(b.0) {
            if let Some(second) = rc.find(b.1) {
                let v: Vec<char> = rc.chars().collect();
                return Some(shift(v, first, second));
            }
        }
    }
    None
}

/// Identifies 2 corners of the rectangle.
fn find_separate(b: Bigram, table: &[String; 5]) -> (usize, usize) {
    let mut result = (0, 0);
    for rc in table.iter() {
        if let Some(pos) = rc.find(b.0) {
            result.0 = pos;
            continue;
        }
        if let Some(pos) = rc.find(b.1) {
            result.1 = pos;
            continue;
        }
    }
    result
}

/// Apply rule 4 (Rectangle).
///
/// # Rule 4
///
/// If the letters are not on the same row or column, replace them with
/// the letters on the same row respectively but at the other pair of
/// corners of the rectangle defined by the original pair. The order is
/// important – the first letter of the encrypted pair is the one that
/// lies on the same row as the first letter of the plaintext pair.
///
/// [Reference](https://en.wikipedia.org/wiki/Playfair_cipher#Description)
fn apply_rectangle(b: Bigram, table: &PlayfairTable) -> Bigram {
    let rows = find_separate(b, &table.cols);
    let cols = find_separate(b, &table.rows);

    let row0: Vec<char> = table.rows[rows.0].chars().collect();
    let row1: Vec<char> = table.rows[rows.1].chars().collect();

    (row0[cols.1], row1[cols.0])
}

/// Apply the PlayFair cipher algorithm.
///
/// The operations for encrypt and decrypt are identical
/// except for the direction of the substitution choice.
fn apply_rules<F>(
    bigrams: Vec<Bigram>,
    table: &PlayfairTable,
    shift: F,
) -> Result<String, &'static str>
where
    F: Fn(Vec<char>, usize, usize) -> Bigram,
{
    let mut text = String::new();
    for b in bigrams {
        // Rule 2 (Row)
        if let Some(bigram) = apply_row_col(b, &table.rows, &shift) {
            text.push(bigram.0);
            text.push(bigram.1);
            continue;
        }

        // Rule 3 (Column)
        if let Some(bigram) = apply_row_col(b, &table.cols, &shift) {
            text.push(bigram.0);
            text.push(bigram.1);
            continue;
        }

        // Rule 4 (Rectangle)
        let bigram = apply_rectangle(b, &table);
        text.push(bigram.0);
        text.push(bigram.1);
    }
    Ok(text)
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn bigram_accepts_alpha_message() {
        assert!(bigram("HelloWorld").is_ok());
    }

    #[test]
    fn bigram_handles_repeats() {
        let message = "FIZZBAR";
        let mut expected: Vec<Bigram> = Vec::new();
        expected.push(('F', 'I'));
        expected.push(('Z', PLAYFAIR_FIX_CHAR));
        expected.push(('Z', 'B'));
        expected.push(('A', 'R'));
        assert!(bigram(message).is_ok());
        assert_eq!(bigram(message).unwrap(), expected);
    }

    #[test]
    fn bigram_handles_odd_length() {
        let message = "WORLD";
        let mut expected: Vec<Bigram> = Vec::new();
        expected.push(('W', 'O'));
        expected.push(('R', 'L'));
        expected.push(('D', PLAYFAIR_FIX_CHAR));
        assert!(bigram(message).is_ok());
        assert_eq!(bigram(message).unwrap(), expected);
    }

    #[test]
    fn bigram_errors_on_spaces() {
        assert!(bigram("Has Spaces").is_err());
    }

    #[test]
    fn bigram_errors_on_nonalpha() {
        assert!(bigram("Bad123").is_err());
    }

    #[test]
    fn cipher_encrypts_std_message() {
        let cipher = Playfair::new("playfair example".to_string()).unwrap();
        assert!(cipher.encrypt("Hide the gold in the tree stump").is_ok());
        assert_eq!(
            cipher.encrypt("Hide the gold in the tree stump").unwrap(),
            "BMODZBXDNABEKUDMUIXMMOUVIF"
        );
    }

    #[test]
    fn cipher_decrypts_std_message() {
        let cipher = Playfair::new("playfair example".to_string()).unwrap();
        assert!(cipher.decrypt("BMODZBXDNABEKUDMUIXMMOUVIF").is_ok());
        assert_eq!(
            cipher.decrypt("BMODZBXDNABEKUDMUIXMMOUVIF").unwrap(),
            "HIDETHEGOLDINTHETREXESTUMP"
        );
    }

    #[test]
    fn new_accepts_alpha_key() {
        assert!(Playfair::new("Foo".to_string()).is_ok());
    }

    #[test]
    fn new_accepts_spaced_key() {
        assert!(Playfair::new("Foo Bar".to_string()).is_ok());
    }

    #[test]
    fn new_rejects_alphanumeric_key() {
        assert!(Playfair::new("Bad123".to_string()).is_err());
    }

    #[test]
    fn new_rejects_symbolic_key() {
        assert!(Playfair::new("Bad?".to_string()).is_err());
    }

    #[test]
    fn new_rejects_unicode_key() {
        assert!(Playfair::new("Bad☢".to_string()).is_err());
    }

    #[test]
    fn encrypt_accepts_spaced_message() {
        let cipher = Playfair::new("Foo".to_string()).unwrap();
        assert!(cipher.encrypt("Bar Baz").is_ok());
    }

    #[test]
    fn encrypt_rejects_alphanumeric_message() {
        let cipher = Playfair::new("Foo".to_string()).unwrap();
        assert!(cipher.encrypt("Bad123").is_err());
    }

    #[test]
    fn encrypt_rejects_symbolic_message() {
        let cipher = Playfair::new("Foo".to_string()).unwrap();
        assert!(cipher.encrypt("Bad?").is_err());
    }

    #[test]
    fn encrypt_rejects_unicode_message() {
        let cipher = Playfair::new("Foo".to_string()).unwrap();
        assert!(cipher.encrypt("Bad☢").is_err());
    }

    #[test]
    fn decrypt_accepts_spaced_message() {
        let cipher = Playfair::new("Foo".to_string()).unwrap();
        assert!(cipher.decrypt("Bar Baz").is_ok());
    }

    #[test]
    fn decrypt_rejects_alphanumeric_message() {
        let cipher = Playfair::new("Foo".to_string()).unwrap();
        assert!(cipher.decrypt("Bad123").is_err());
    }

    #[test]
    fn decrypt_rejects_symbolic_message() {
        let cipher = Playfair::new("Foo".to_string()).unwrap();
        assert!(cipher.decrypt("Bad?").is_err());
    }

    #[test]
    fn decrypt_rejects_unicode_message() {
        let cipher = Playfair::new("Foo".to_string()).unwrap();
        assert!(cipher.decrypt("Bad☢").is_err());
    }
}