1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
#![no_std]

extern crate alloc;

use alloc::boxed::Box;
use alloc::collections::VecDeque;
use alloc::vec::Vec;
use core::cmp::min;
use core::ops::{Index, IndexMut};

/// The default chunk size
pub const DEFAULT_CHUNK_SIZE: usize = 256;

/// A deque style buffer that can be written to and read from.
/// See `GenericChunkedBuffer` for more details.
pub type ChunkedBuffer = GenericChunkedBuffer<DEFAULT_CHUNK_SIZE>;

/// A deque style buffer that can be written to and read from.
///
/// The buffer is composed of a series of fixed size chunks.
///
/// This structure is useful for memory constrained environments.  It limits the size of contiguous
/// allocations and incrementally releases memory as the buffer is consumed.
///
/// Example code:
/// ```
/// use chunked_buffer::ChunkedBuffer;
///
/// let mut buf = ChunkedBuffer::new();
/// buf.write(&[1, 2, 3]);
/// let mut dest = [0; 10];
/// let n = buf.read(&mut dest);
/// assert_eq!(n, 3);
/// assert_eq!(dest, [1, 2, 3, 0, 0, 0, 0, 0, 0, 0]);
/// ```
///
// Invariants:
// - `chunks` is never empty
// - all chunks are the same size
// - the read position is always in the first chunk
// - the write position is always in the last chunk
pub struct GenericChunkedBuffer<const CHUNK_SIZE: usize> {
    // the inclusive position of the first octet in the first chunk
    write_pos: usize,
    // the exclusive position of the last octet written in the last chunk
    read_pos: usize,
    chunks: VecDeque<Box<[u8; CHUNK_SIZE]>>,
}

impl<const CHUNK_SIZE: usize> GenericChunkedBuffer<CHUNK_SIZE> {
    /// Create a new, empty buffer
    pub fn new() -> Self {
        let mut s = GenericChunkedBuffer {
            write_pos: 0,
            read_pos: 0,
            chunks: VecDeque::new(),
        };
        s.chunks.push_back(Box::new([0; CHUNK_SIZE]));
        s
    }

    /// The number of bytes in the buffer
    pub fn len(&self) -> usize {
        (self.chunks.len() - 1) * CHUNK_SIZE + self.write_pos - self.read_pos
    }

    /// Returns true if the buffer is empty
    pub fn is_empty(&self) -> bool {
        self.chunks.len() == 1 && self.write_pos == self.read_pos
    }

    /// Consumes as many bytes as possible from the start of the buffer
    /// and writes them to `dest`
    pub fn read(&mut self, dest: &mut [u8]) -> usize {
        let mut nread = 0;
        while nread < dest.len() && !self.is_empty() {
            let chunk = &*self.chunks[0];
            let start = self.read_pos;
            let mut end = min(CHUNK_SIZE, start + dest.len() - nread);
            if self.chunks.len() == 1 {
                end = end.min(self.write_pos);
            }
            let n = end - start;
            dest[nread..nread + n].copy_from_slice(&chunk[start..end]);
            if end == CHUNK_SIZE {
                self.read_pos = 0;
                self.chunks.pop_front();
                // self.chunks cannot be empty here, because we must have created a new chunk
                // when we wrote the last byte
            } else {
                self.read_pos = end;
            }
            nread += n;
        }
        nread
    }

    /// pushes all the bytes in `src` to the end of the buffer
    pub fn write(&mut self, src: &[u8]) {
        let mut nwritten = 0;
        while nwritten < src.len() {
            let chunk = &mut **self.chunks.back_mut().unwrap();
            let start = self.write_pos;
            let end = min(CHUNK_SIZE, start + src.len() - nwritten);
            let n = end - start;
            chunk[start..end].copy_from_slice(&src[nwritten..nwritten + n]);
            nwritten += n;
            if end == CHUNK_SIZE {
                self.write_pos = 0;
                self.chunks.push_back(Box::new([0; CHUNK_SIZE]));
            } else {
                self.write_pos = end;
            }
        }
    }

    /// Returns an iterator over u8 contained in buffer
    pub fn iter(&self) -> Iter<CHUNK_SIZE> {
        Iter::new(self)
    }

    /// Returns an iterator over the chunks contained in buffer
    pub fn iter_chunks(&self) -> IterChunk<CHUNK_SIZE> {
        IterChunk::new(self)
    }

    /// Converts the buffer into a vector
    pub fn as_vec(&self) -> Vec<u8> {
        let mut vec = Vec::with_capacity(self.len());
        for chunk in self.iter_chunks() {
            vec.extend_from_slice(chunk);
        }
        vec
    }
}

impl<const CHUNK_SIZE: usize> Default for GenericChunkedBuffer<CHUNK_SIZE> {
    fn default() -> Self {
        Self::new()
    }
}

impl<const CHUNK_SIZE: usize> Index<usize> for GenericChunkedBuffer<CHUNK_SIZE> {
    type Output = u8;

    fn index(&self, index: usize) -> &Self::Output {
        if self.is_empty() {
            panic!("indexed into an empty buffer");
        }
        if index >= self.len() {
            panic!("out of bounds access");
        }
        let pos = index % CHUNK_SIZE;
        let index = index / CHUNK_SIZE;
        &self.chunks[index][pos]
    }
}

impl<const CHUNK_SIZE: usize> IndexMut<usize> for GenericChunkedBuffer<CHUNK_SIZE> {
    fn index_mut(&mut self, index: usize) -> &mut Self::Output {
        if self.is_empty() {
            panic!("indexed into an empty buffer");
        }
        if index >= self.len() {
            panic!("out of bounds access");
        }
        let pos = index % CHUNK_SIZE;
        let index = index / CHUNK_SIZE;
        &mut self.chunks[index][pos]
    }
}

pub struct Iter<'a, const CHUNK_SIZE: usize> {
    nread: usize,
    index: usize,
    read_pos: usize,
    buf: &'a GenericChunkedBuffer<CHUNK_SIZE>,
}

impl<'a, const CHUNK_SIZE: usize> Iter<'a, CHUNK_SIZE> {
    fn new(buf: &'a GenericChunkedBuffer<CHUNK_SIZE>) -> Self {
        Iter {
            nread: 0,
            index: 0,
            read_pos: buf.read_pos,
            buf,
        }
    }
}

impl<const CHUNK_SIZE: usize> Iterator for Iter<'_, CHUNK_SIZE> {
    type Item = u8;
    fn next(&mut self) -> Option<Self::Item> {
        if self.nread == self.buf.len() {
            None
        } else {
            let byte = self.buf.chunks[self.index][self.read_pos];
            self.nread += 1;
            self.read_pos += 1;
            if self.read_pos == CHUNK_SIZE {
                self.read_pos = 0;
                self.index += 1;
            }
            Some(byte)
        }
    }
}

pub struct IterChunk<'a, const CHUNK_SIZE: usize> {
    index: usize,
    buf: &'a GenericChunkedBuffer<CHUNK_SIZE>,
}

impl<'a, const CHUNK_SIZE: usize> IterChunk<'a, CHUNK_SIZE> {
    fn new(buf: &'a GenericChunkedBuffer<CHUNK_SIZE>) -> Self {
        IterChunk { index: 0, buf }
    }
}

impl<'a, const CHUNK_SIZE: usize> Iterator for IterChunk<'a, CHUNK_SIZE> {
    type Item = &'a [u8];
    fn next(&mut self) -> Option<Self::Item> {
        if self.index == self.buf.chunks.len() {
            None
        } else {
            let begin = if self.index == 0 {
                self.buf.read_pos
            } else {
                0
            };
            let end = if self.index + 1 == self.buf.chunks.len() {
                self.buf.write_pos
            } else {
                CHUNK_SIZE
            };
            let slice = &self.buf.chunks[self.index][begin..end];
            self.index += 1;
            if slice.is_empty() {
                None
            } else {
                Some(slice)
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    type Buf = GenericChunkedBuffer<4>;

    #[test]
    fn test() {
        let mut buf = Buf::new();
        assert_eq!(buf.len(), 0);
        assert!(buf.is_empty());

        let mut dest = [0; 10];
        assert_eq!(buf.read(&mut dest), 0);

        buf.write(&[1, 2, 3]);
        assert_eq!(buf.len(), 3);
        assert!(!buf.is_empty());

        let mut dest = [0; 10];
        assert_eq!(buf.read(&mut dest), 3);
        assert_eq!(dest, [1, 2, 3, 0, 0, 0, 0, 0, 0, 0]);
        assert_eq!(buf.len(), 0);
        assert!(buf.is_empty());

        buf.write(&[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
        assert_eq!(buf.len(), 10);
        assert!(!buf.is_empty());

        let mut dest = [0; 9];
        assert_eq!(buf.read(&mut dest), 9);
        assert_eq!(dest, [1, 2, 3, 4, 5, 6, 7, 8, 9]);
        assert_eq!(buf.len(), 1);

        let mut dest = [0; 9];
        assert_eq!(buf.read(&mut dest), 1);
        assert_eq!(dest, [10, 0, 0, 0, 0, 0, 0, 0, 0]);
        assert_eq!(buf.len(), 0);
        assert!(buf.is_empty());

        buf.write(&[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
        assert_eq!(buf.len(), 10);
        assert!(!buf.is_empty());

        let mut dest = [0; 5];
        assert_eq!(buf.read(&mut dest), 5);
        assert_eq!(dest, [1, 2, 3, 4, 5]);
        assert_eq!(buf.len(), 5);
        assert!(!buf.is_empty());

        let mut dest = [0; 5];
        assert_eq!(buf.read(&mut dest), 5);
        assert_eq!(dest, [6, 7, 8, 9, 10]);
        assert_eq!(buf.len(), 0);
        assert!(buf.is_empty());

        // at chunk boundary
        let mut dest = [0; 5];
        buf.write(&[99]);
        assert_eq!(buf.len(), 1);
        assert_eq!(buf.read(&mut dest), 1);
        assert_eq!(dest, [99, 0, 0, 0, 0]);
    }
    #[test]
    fn test_iterator() {
        // empty buffer
        let mut buf = Buf::new();
        let mut i = buf.iter();
        assert_eq!(i.next(), None);
        assert_eq!(i.next(), None);
        assert_eq!(i.next(), None);

        // empty write
        buf = Buf::new();
        buf.write(&[]);
        i = buf.iter();
        assert_eq!(i.next(), None);
        assert_eq!(i.next(), None);
        assert_eq!(i.next(), None);

        // first chunk not filled
        buf = Buf::new();
        buf.write(&[1, 2, 3]);
        i = buf.iter();
        for count in 1..4 {
            assert_eq!(i.next(), Some(count));
        }
        assert_eq!(i.next(), None);
        assert_eq!(i.next(), None);
        assert_eq!(i.next(), None);

        // first chunk filled
        buf = Buf::new();
        buf.write(&[1, 2, 3, 4]);
        i = buf.iter();
        for count in 1..5 {
            assert_eq!(i.next(), Some(count));
        }
        assert_eq!(i.next(), None);
        assert_eq!(i.next(), None);
        assert_eq!(i.next(), None);

        // third chunk not filled
        buf = Buf::new();
        buf.write(&[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
        i = buf.iter();
        for count in 1..11 {
            assert_eq!(i.next(), Some(count));
        }
        assert_eq!(i.next(), None);
        assert_eq!(i.next(), None);
        assert_eq!(i.next(), None);

        // third chunk filled
        buf = Buf::new();
        buf.write(&[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]);
        i = buf.iter();
        for count in 1..13 {
            assert_eq!(i.next(), Some(count));
        }
        assert_eq!(i.next(), None);
        assert_eq!(i.next(), None);
        assert_eq!(i.next(), None);

        // fourth chunk not filled
        buf = Buf::new();
        buf.write(&[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]);
        i = buf.iter();
        for count in 1..14 {
            assert_eq!(i.next(), Some(count));
        }
        assert_eq!(i.next(), None);
        assert_eq!(i.next(), None);
        assert_eq!(i.next(), None);
    }
    #[test]
    fn test_iter_chunks() {
        // empty buffer
        let mut buf = Buf::new();
        let mut i = buf.iter_chunks();
        assert_eq!(i.next(), None);
        assert_eq!(i.next(), None);
        assert_eq!(i.next(), None);

        // empty write
        buf = Buf::new();
        buf.write(&[]);
        i = buf.iter_chunks();
        assert_eq!(i.next(), None);
        assert_eq!(i.next(), None);
        assert_eq!(i.next(), None);

        // first chunk not filled
        buf = Buf::new();
        buf.write(&[1, 2, 3]);
        i = buf.iter_chunks();
        assert_eq!(i.next(), Some(&[1, 2, 3][..]));
        assert_eq!(i.next(), None);
        assert_eq!(i.next(), None);
        assert_eq!(i.next(), None);

        // first chunk filled
        buf = Buf::new();
        buf.write(&[1, 2, 3, 4]);
        i = buf.iter_chunks();
        assert_eq!(i.next(), Some(&[1, 2, 3, 4][..]));
        assert_eq!(i.next(), None);
        assert_eq!(i.next(), None);
        assert_eq!(i.next(), None);

        // third chunk not filled
        buf = Buf::new();
        buf.write(&[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
        i = buf.iter_chunks();
        assert_eq!(i.next(), Some(&[1, 2, 3, 4][..]));
        assert_eq!(i.next(), Some(&[5, 6, 7, 8][..]));
        assert_eq!(i.next(), Some(&[9, 10][..]));
        assert_eq!(i.next(), None);
        assert_eq!(i.next(), None);
        assert_eq!(i.next(), None);

        // third chunk filled
        buf = Buf::new();
        buf.write(&[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]);
        i = buf.iter_chunks();
        assert_eq!(i.next(), Some(&[1, 2, 3, 4][..]));
        assert_eq!(i.next(), Some(&[5, 6, 7, 8][..]));
        assert_eq!(i.next(), Some(&[9, 10, 11, 12][..]));
        assert_eq!(i.next(), None);
        assert_eq!(i.next(), None);
        assert_eq!(i.next(), None);

        // fourth chunk not filled
        buf = Buf::new();
        buf.write(&[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]);
        i = buf.iter_chunks();
        assert_eq!(i.next(), Some(&[1, 2, 3, 4][..]));
        assert_eq!(i.next(), Some(&[5, 6, 7, 8][..]));
        assert_eq!(i.next(), Some(&[9, 10, 11, 12][..]));
        assert_eq!(i.next(), Some(&[13][..]));
        assert_eq!(i.next(), None);
        assert_eq!(i.next(), None);
        assert_eq!(i.next(), None);
    }
    #[test]
    fn test_index() {
        let mut buf = Buf::new();
        buf.write(&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]);
        for i in 0..14 {
            assert_eq!(buf[i], i as u8);
        }
    }
    #[test]
    #[should_panic]
    fn test_index_panic_on_empty() {
        let buf = Buf::new();
        buf[0];
    }
    #[test]
    #[should_panic]
    fn test_index_out_of_bounds() {
        let mut buf = Buf::new();
        buf.write(&[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]);
        buf[13];
    }
    #[test]
    fn test_index_mut() {
        let mut buf = Buf::new();
        buf.write(&[0u8; 14]);
        for i in 0..14 {
            buf[i] = i as u8;
        }
        let mut want = Buf::new();
        want.write(&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]);
        assert_eq!(buf.as_vec(), want.as_vec());
    }
    #[test]
    #[should_panic]
    fn test_index_mut_panic_on_empty() {
        let mut buf = Buf::new();
        buf[0] = 3;
    }
    #[test]
    #[should_panic]
    fn test_index_mut_out_of_bounds() {
        let mut buf = Buf::new();
        buf.write(&[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]);
        buf[13] = 3;
    }
}