1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
use crate::{
any::Any,
array::Array,
boxed,
check::{Checker, Checks, Error},
collect::Collect,
dampen::Dampen,
filter::Filter,
filter_map::FilterMap,
flatten::Flatten,
keep::Keep,
map::Map,
primitive::Range,
prove::Prove,
sample::{Sampler, Samples},
shrink::{All, Shrink},
size::Size,
utility::tuples,
};
use fastrand::Rng;
use std::iter::FromIterator;
#[derive(Clone, Debug)]
pub struct State {
pub(crate) size: f64,
pub(crate) count: usize,
pub(crate) depth: usize,
seed: u64,
random: Rng,
}
/// When implemented for a type `T`, this allows to retrieve a generator for `T` that does not require any parameter.
/// It should be implemented for any type that has a canonical way to be generated.
/// To provide a generator with parameters, see [`IntoGenerate`].
///
/// For example, this trait is implemented for all non-pointer primitive types and for some standard types (such as [`Option<T>`] amd [`Result<T, E>`]).
pub trait FullGenerate {
type Item;
type Generate: Generate<Item = Self::Item>;
fn generator() -> Self::Generate;
}
/// When implemented for a type `T`, this allows to retrieve a generate using the values in `T`, similar to the [`Into<T>`] trait.
pub trait IntoGenerate {
type Item;
type Generate: Generate<Item = Self::Item>;
fn generator(self) -> Self::Generate;
}
pub trait Generate {
type Item;
type Shrink: Shrink<Item = Self::Item>;
/// Primary method of this trait. It generates a [`Shrink`] instance that will be able to produce values of type
/// [`Generate::Item`] and shrink itself.
fn generate(&self, state: &mut State) -> Self::Shrink;
/// Wraps `self` in a boxed [`Generate`]. This is notably relevant for recursive [`Generate`] implementations where
/// the type would otherwise be infinite.
///
/// # Examples
/// ```
/// use checkito::*;
///
/// enum Node {
/// Leaf,
/// Branch(Vec<Node>),
/// }
///
/// fn node() -> impl Generate<Item = Node> {
/// (
/// with(|| Node::Leaf),
/// // Without [`Generate::boxed`], this type would be infinite.
/// lazy(node).collect().map(Node::Branch).boxed()
/// )
/// .any()
/// .map(|or| or.into())
/// }
///
/// fn choose(choose: bool) -> impl Generate<Item = char> {
/// if choose {
/// // Without [`Generate::boxed`], the `if/else` branches would not have the same type.
/// letter().boxed()
/// } else {
/// digit().boxed()
/// }
/// }
/// ```
fn boxed(self) -> boxed::Generator<Self::Item>
where
Self: Sized + 'static,
boxed::Generator<Self::Item>: Generate,
{
boxed::Generator::new(self)
}
/// Maps generated [`Generate::Item`] to an arbitrary type `T` using the provided function `F`.
fn map<T, F: Fn(Self::Item) -> T>(self, map: F) -> Map<Self, F>
where
Self: Sized,
Map<Self, F>: Generate,
{
Map::new(self, map)
}
/// Same as [`Generate::filter_with`] but with a predefined number of `retries`.
fn filter<F: Fn(&Self::Item) -> bool>(self, filter: F) -> Filter<Self, F>
where
Self: Sized,
Filter<Self, F>: Generate,
{
self.filter_with(256, filter)
}
/// Generates many [`Generate::Item`] with an increasingly large `size` until the filter function `F` is satisfied, up to
/// the maximum number of `retries`.
///
/// Since this [`Generate`] implementation is not guaranteed to succeed, the item type is changed to a [`Option<Generate::Item>`]
/// where a [`None`] represents the failure to satisfy the filter.
fn filter_with<F: Fn(&Self::Item) -> bool>(self, retries: usize, filter: F) -> Filter<Self, F>
where
Self: Sized,
Filter<Self, F>: Generate,
{
Filter::new(self, filter, retries)
}
/// Same as [`Generate::filter_map_with`] but with a predefined number of `retries`.
fn filter_map<T, F: Fn(Self::Item) -> Option<T>>(self, map: F) -> FilterMap<Self, F>
where
Self: Sized,
FilterMap<Self, F>: Generate,
{
self.filter_map_with(256, map)
}
/// Combines [`Generate::map`] and [`Generate::filter`] in a single [`Generate`] implementation where the map function
/// is considered to satisfy the filter when a [`Some(T)`] is produced.
fn filter_map_with<T, F: Fn(Self::Item) -> Option<T>>(
self,
retries: usize,
map: F,
) -> FilterMap<Self, F>
where
Self: Sized,
FilterMap<Self, F>: Generate,
{
FilterMap::new(self, map, retries)
}
/// Combines [`Generate::map`] and [`Generate::flatten`] in a single [`Generate`] implementation.
fn flat_map<G: Generate, F: Fn(Self::Item) -> G>(self, map: F) -> Flatten<Map<Self, F>>
where
Self: Sized,
Map<Self, F>: Generate<Item = G>,
Flatten<Map<Self, F>>: Generate,
{
self.map(map).flatten()
}
/// Flattens the [`Generate::Item`], assuming that it implements [`Generate`]. The resulting item type is
/// `<Generate::Item as Generate>::Item`.
///
/// Additionally, the call to [`Generate::generate`] to the inner [`Generate`] implementation will have its `depth`
/// increased by `1`. The `depth` is a value used by other [`Generate`] implementations (such as [`Generate::size`] and
/// [`Generate::dampen`]) to alter the `size` of generated items. It tries to represent the recursion depth since it
/// is expected that recursive [`Generate`] instances will need to go through it. Implementations such as [`lazy`](crate::lazy)
/// and [`Generate::flat_map`] use it.
///
/// The `depth` is particularly useful to limit the amount of recursion that happens for
/// structures that potentially explode exponentially as the recursion depth increases (think of a tree structure).
fn flatten(self) -> Flatten<Self>
where
Self: Sized,
Self::Item: Generate,
Flatten<Self>: Generate,
{
Flatten(self)
}
/// For a type `T` where [`Any<T>`] implements [`Generate`], the behavior of the generation changes from *generate all* of
/// my components to *generate one* of my components chosen randomly.
/// It is implemented for tuples, slices, arrays, [`Vec<T>`] and a few other collections.
///
/// The random selection can be controlled by wrapping each element of a supported collection in a
/// [`any::Weight`](crate::any::Weight), which will inform the [`Generate`] implementation to perform a weighted random
/// between elements of the collection.
fn any(self) -> Any<Self>
where
Self: Sized,
Any<Self>: Generate,
{
Any(self)
}
/// Generates `N` items and fills an array with it.
fn array<const N: usize>(self) -> Array<Self, N>
where
Self: Sized,
Array<Self, N>: Generate,
{
Array(self)
}
/// Same as [`Generate::collect_with`] but with a predefined `count`.
fn collect<F: FromIterator<Self::Item>>(self) -> Collect<Self, Range<usize>, F>
where
Self: Sized,
Collect<Self, Range<usize>, F>: Generate,
{
self.collect_with((..256usize).generator())
}
/// Generates a variable number of items based on the provided `count` [`Generate`] and then builds a value of type
/// `F` based on its implementation of [`FromIterator`].
fn collect_with<C: Generate<Item = usize>, F: FromIterator<Self::Item>>(
self,
count: C,
) -> Collect<Self, C, F>
where
Self: Sized,
Collect<Self, C, F>: Generate,
{
Collect::new(self, count)
}
/// Maps the current `size` of the generation process to a different one. The `size` is a value in the range `[0.0..1.0]`
/// that represents *how big* the generated items are based on the generator's constraints. The generation process will
/// initially try to produce *small* items and then move on to *bigger* ones.
/// Note that the `size` does not guarantee a *small* or *big* generated item since [`Generate`] implementations are free
/// to interpret it as they wish, although that is its intention.
///
/// For example, a *small* number will be close to `0`, a *small* collection will have its `len()` close to `0`, a *large*
/// [`bool`] will be `true`, a *large* [`String`] will have many [`char`], etc.
///
/// The provided `map` function is described as such:
/// - Its first argument is the current `size` in the range `[0.0..1.0]`.
/// - Its second argument is the current `depth` (see [`Generate::flatten`] for more information about `depth`).
/// - Its return value will be clamped to the `[0.0..1.0]` range and panic if it is infinite or [`f64::NAN`].
///
/// Useful to nullify the sizing of items (`self.size(|_, _| 1.0)` will always produces items of full `size`) or to
/// attenuate the `size`.
fn size<F: Fn(f64, usize) -> f64>(self, map: F) -> Size<Self, F>
where
Self: Sized,
Size<Self, F>: Generate,
{
Size(self, map)
}
/// Same as [`Generate::dampen_with`] but with predefined arguments.
fn dampen(self) -> Dampen<Self>
where
Self: Sized,
Size<Self>: Generate,
{
self.dampen_with(1.0, 8, 8192)
}
/// Dampens the `size` (see [`Generate::size`] for more information about `size`) as items are generated.
/// - The `pressure` can be thought of as how fast will the `size` be reduced as the `depth` increases (see [`Generate::flatten`]
/// for more information about `depth`).
/// - The `deepest` will set the `size` to `0` when the `depth` is `>=` than it.
/// - The `limit` will set the `size` to `0` after the number of times that the `depth` increased is `>=` than it.
///
/// This [`Generate`] implementation is particularly useful to limit the amount of recursion that happens for structures
/// that are infinite and potentially explode exponentially as the recursion depth increases (think of a tree structure).
fn dampen_with(self, pressure: f64, deepest: usize, limit: usize) -> Dampen<Self>
where
Self: Sized,
Dampen<Self>: Generate,
{
debug_assert!(pressure.is_finite());
debug_assert!(pressure >= 0.0);
Dampen {
pressure,
deepest,
limit,
inner: self,
}
}
/// Keeps the generated items intact through the shrinking process (i.e. *un-shrinked*).
fn keep(self) -> Keep<Self>
where
Self: Sized,
Keep<Self>: Generate,
{
Keep(self)
}
/// Provides a [`Sampler`] that allows to configure sampling settings and generate samples.
fn sampler(&self) -> Sampler<Self> {
Sampler::new(self, None)
}
/// Generates `count` random values the are progressively larger in size. For additional sampling settings, see [`Generate::sampler`].
fn samples(&self, count: usize) -> Samples<Self> {
self.sampler().samples(count)
}
/// Generates a random value of `size` (0.0..=1.0). For additional sampling settings, see [`Generate::sampler`].
fn sample(&self, size: f64) -> Self::Item {
self.sampler().sample(size)
}
fn checker(&self) -> Checker<Self> {
Checker::new(self)
}
fn checks<P: Prove, F: FnMut(&Self::Item) -> P>(
&self,
count: usize,
check: F,
) -> Checks<Self, P, F> {
self.checker().checks(count, check)
}
fn check<P: Prove, F: FnMut(&Self::Item) -> P>(
&self,
count: usize,
check: F,
) -> Result<(), Error<Self::Item, P>> {
for result in self.checks(count, check) {
result?;
}
Ok(())
}
}
impl State {
pub fn new(size: f64, seed: Option<u64>) -> Self {
let random = seed.map_or_else(Rng::new, Rng::with_seed);
Self {
size: size.max(0.0).min(1.0),
depth: 0,
count: 0,
seed: random.get_seed(),
random,
}
}
pub fn from_iteration(index: usize, count: usize, seed: Option<u64>) -> Self {
// This size calculation ensures that 10% of samples are fully sized.
if count == 1 {
Self::new(1.0, seed)
} else {
Self::new((index as f64 / count as f64 * 1.1).min(1.), seed)
}
}
pub const fn size(&self) -> f64 {
self.size
}
pub const fn depth(&self) -> usize {
self.depth
}
pub const fn seed(&self) -> u64 {
self.seed
}
pub fn random(&mut self) -> &mut Rng {
&mut self.random
}
}
impl<G: FullGenerate + ?Sized> FullGenerate for &G {
type Item = G::Item;
type Generate = G::Generate;
fn generator() -> Self::Generate {
G::generator()
}
}
impl<G: FullGenerate + ?Sized> FullGenerate for &mut G {
type Item = G::Item;
type Generate = G::Generate;
fn generator() -> Self::Generate {
G::generator()
}
}
impl<G: IntoGenerate + Clone> IntoGenerate for &G {
type Item = G::Item;
type Generate = G::Generate;
fn generator(self) -> Self::Generate {
self.clone().generator()
}
}
impl<G: IntoGenerate + Clone> IntoGenerate for &mut G {
type Item = G::Item;
type Generate = G::Generate;
fn generator(self) -> Self::Generate {
self.clone().generator()
}
}
impl<G: Generate + ?Sized> Generate for &G {
type Item = G::Item;
type Shrink = G::Shrink;
fn generate(&self, state: &mut State) -> Self::Shrink {
G::generate(self, state)
}
}
impl<G: Generate + ?Sized> Generate for &mut G {
type Item = G::Item;
type Shrink = G::Shrink;
fn generate(&self, state: &mut State) -> Self::Shrink {
G::generate(self, state)
}
}
macro_rules! tuple {
($n:ident, $c:tt $(,$p:ident, $t:ident, $i:tt)*) => {
impl<$($t: FullGenerate,)*> FullGenerate for ($($t,)*) {
type Item = ($($t::Item,)*);
type Generate = ($($t::Generate,)*);
#[allow(clippy::unused_unit)]
fn generator() -> Self::Generate {
($($t::generator(),)*)
}
}
impl<$($t: IntoGenerate,)*> IntoGenerate for ($($t,)*) {
type Item = ($($t::Item,)*);
type Generate = ($($t::Generate,)*);
#[allow(clippy::unused_unit)]
fn generator(self) -> Self::Generate {
($(self.$i.generator(),)*)
}
}
impl<$($t: Generate,)*> Generate for ($($t,)*) {
type Item = ($($t::Item,)*);
type Shrink = All<($($t::Shrink,)*)>;
fn generate(&self, _state: &mut State) -> Self::Shrink {
All::new(($(self.$i.generate(_state),)*))
}
}
};
}
tuples!(tuple);