1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
// Copyright (c) 2018 Levente Kurusa
// Copyright (c) 2020 Ant Group
//
// SPDX-License-Identifier: Apache-2.0 or MIT
//
//! This module contains the implementation of the `cpu` cgroup subsystem.
//!
//! See the Kernel's documentation for more information about this subsystem, found at:
//! [Documentation/scheduler/sched-design-CFS.txt](https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt)
//! paragraph 7 ("GROUP SCHEDULER EXTENSIONS TO CFS").
use std::fs::File;
use std::io::{Read, Write};
use std::path::PathBuf;
use crate::error::ErrorKind::*;
use crate::error::*;
use crate::{parse_max_value, read_i64_from, read_u64_from};
use crate::{
ControllIdentifier, ControllerInternal, Controllers, CpuResources, CustomizedAttribute,
MaxValue, Resources, Subsystem,
};
/// A controller that allows controlling the `cpu` subsystem of a Cgroup.
///
/// In essence, it allows gathering information about how much the tasks inside the control group
/// are using the CPU and creating rules that limit their usage. Note that this crate does not yet
/// support managing realtime tasks.
#[derive(Debug, Clone)]
pub struct CpuController {
base: PathBuf,
path: PathBuf,
v2: bool,
}
/// The current state of the control group and its processes.
#[derive(Debug)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Cpu {
/// Reports CPU time statistics.
///
/// Corresponds the `cpu.stat` file in `cpu` control group.
pub stat: String,
}
/// The current state of the control group and its processes.
#[derive(Debug)]
struct CfsQuotaAndPeriod {
quota: MaxValue,
period: u64,
}
impl ControllerInternal for CpuController {
fn control_type(&self) -> Controllers {
Controllers::Cpu
}
fn get_path(&self) -> &PathBuf {
&self.path
}
fn get_path_mut(&mut self) -> &mut PathBuf {
&mut self.path
}
fn get_base(&self) -> &PathBuf {
&self.base
}
fn is_v2(&self) -> bool {
self.v2
}
fn apply(&self, res: &Resources) -> Result<()> {
// get the resources that apply to this controller
let res: &CpuResources = &res.cpu;
update_and_test!(self, set_shares, res.shares, shares);
update_and_test!(self, set_cfs_period, res.period, cfs_period);
update_and_test!(self, set_cfs_quota, res.quota, cfs_quota);
res.attrs.iter().for_each(|(k, v)| {
let _ = self.set(k, v);
});
// TODO: rt properties (CONFIG_RT_GROUP_SCHED) are not yet supported
Ok(())
}
}
impl ControllIdentifier for CpuController {
fn controller_type() -> Controllers {
Controllers::Cpu
}
}
impl<'a> From<&'a Subsystem> for &'a CpuController {
fn from(sub: &'a Subsystem) -> &'a CpuController {
unsafe {
match sub {
Subsystem::Cpu(c) => c,
_ => {
assert_eq!(1, 0);
let v = std::mem::MaybeUninit::uninit();
v.assume_init()
}
}
}
}
}
impl CpuController {
/// Contructs a new `CpuController` with `root` serving as the root of the control group.
pub fn new(root: PathBuf, v2: bool) -> Self {
Self {
base: root.clone(),
path: root,
v2,
}
}
/// Returns CPU time statistics based on the processes in the control group.
pub fn cpu(&self) -> Cpu {
Cpu {
stat: self
.open_path("cpu.stat", false)
.and_then(|mut file| {
let mut s = String::new();
let res = file.read_to_string(&mut s);
match res {
Ok(_) => Ok(s),
Err(e) => Err(Error::with_cause(ReadFailed("cpu.stat".to_string()), e)),
}
})
.unwrap_or_default(),
}
}
/// Configures the CPU bandwidth (in relative relation to other control groups and this control
/// group's parent).
///
/// For example, setting control group `A`'s `shares` to `100`, and control group `B`'s
/// `shares` to `200` ensures that control group `B` receives twice as much as CPU bandwidth.
/// (Assuming both `A` and `B` are of the same parent)
pub fn set_shares(&self, shares: u64) -> Result<()> {
let mut file_name = "cpu.shares";
if self.v2 {
file_name = "cpu.weight";
}
// NOTE: .CpuShares is not used here. Conversion is the caller's responsibility.
self.open_path(file_name, true).and_then(|mut file| {
file.write_all(shares.to_string().as_ref()).map_err(|e| {
Error::with_cause(WriteFailed(file_name.to_string(), shares.to_string()), e)
})
})
}
/// Retrieve the CPU bandwidth that this control group (relative to other control groups and
/// this control group's parent) can use.
pub fn shares(&self) -> Result<u64> {
let mut file = "cpu.shares";
if self.v2 {
file = "cpu.weight";
}
self.open_path(file, false).and_then(read_u64_from)
}
/// Specify a period (when using the CFS scheduler) of time in microseconds for how often this
/// control group's access to the CPU should be reallocated.
pub fn set_cfs_period(&self, us: u64) -> Result<()> {
if self.v2 {
return self.set_cfs_quota_and_period(None, Some(us));
}
self.open_path("cpu.cfs_period_us", true)
.and_then(|mut file| {
file.write_all(us.to_string().as_ref()).map_err(|e| {
Error::with_cause(
WriteFailed("cpu.cfs_period_us".to_string(), us.to_string()),
e,
)
})
})
}
/// Retrieve the period of time of how often this cgroup's access to the CPU should be
/// reallocated in microseconds.
pub fn cfs_period(&self) -> Result<u64> {
if self.v2 {
let current_value = self
.open_path("cpu.max", false)
.and_then(parse_cfs_quota_and_period)?;
return Ok(current_value.period);
}
self.open_path("cpu.cfs_period_us", false)
.and_then(read_u64_from)
}
/// Specify a quota (when using the CFS scheduler) of time in microseconds for which all tasks
/// in this control group can run during one period (see: `set_cfs_period()`).
pub fn set_cfs_quota(&self, us: i64) -> Result<()> {
if self.v2 {
return self.set_cfs_quota_and_period(Some(us), None);
}
self.open_path("cpu.cfs_quota_us", true)
.and_then(|mut file| {
file.write_all(us.to_string().as_ref()).map_err(|e| {
Error::with_cause(
WriteFailed("cpu.cfs_quota_us".to_string(), us.to_string()),
e,
)
})
})
}
/// Retrieve the quota of time for which all tasks in this cgroup can run during one period, in
/// microseconds.
pub fn cfs_quota(&self) -> Result<i64> {
if self.v2 {
let current_value = self
.open_path("cpu.max", false)
.and_then(parse_cfs_quota_and_period)?;
return Ok(current_value.quota.to_i64());
}
self.open_path("cpu.cfs_quota_us", false)
.and_then(read_i64_from)
}
pub fn set_cfs_quota_and_period(&self, quota: Option<i64>, period: Option<u64>) -> Result<()> {
if !self.v2 {
if let Some(q) = quota {
self.set_cfs_quota(q)?;
}
if let Some(p) = period {
self.set_cfs_period(p)?;
}
return Ok(());
}
// https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
// cpu.max
// A read-write two value file which exists on non-root cgroups. The default is “max 100000”.
// The maximum bandwidth limit. It’s in the following format:
// $MAX $PERIOD
// which indicates that the group may consume upto $MAX in each $PERIOD duration.
// “max” for $MAX indicates no limit. If only one number is written, $MAX is updated.
let current_value = self
.open_path("cpu.max", false)
.and_then(parse_cfs_quota_and_period)?;
let new_quota = if let Some(q) = quota {
if q > 0 {
q.to_string()
} else {
"max".to_string()
}
} else {
current_value.quota.to_string()
};
let new_period = if let Some(p) = period {
p.to_string()
} else {
current_value.period.to_string()
};
let line = format!("{} {}", new_quota, new_period);
self.open_path("cpu.max", true).and_then(|mut file| {
file.write_all(line.as_ref())
.map_err(|e| Error::with_cause(WriteFailed("cpu.max".to_string(), line), e))
})
}
pub fn set_rt_runtime(&self, us: i64) -> Result<()> {
self.open_path("cpu.rt_runtime_us", true)
.and_then(|mut file| {
file.write_all(us.to_string().as_ref()).map_err(|e| {
Error::with_cause(
WriteFailed("cpu.rt_runtime_us".to_string(), us.to_string()),
e,
)
})
})
}
pub fn set_rt_period_us(&self, us: u64) -> Result<()> {
self.open_path("cpu.rt_period_us", true)
.and_then(|mut file| {
file.write_all(us.to_string().as_ref()).map_err(|e| {
Error::with_cause(
WriteFailed("cpu.rt_period_us".to_string(), us.to_string()),
e,
)
})
})
}
}
impl CustomizedAttribute for CpuController {}
fn parse_cfs_quota_and_period(mut file: File) -> Result<CfsQuotaAndPeriod> {
let mut content = String::new();
file.read_to_string(&mut content)
.map_err(|e| Error::with_cause(ReadFailed("cpu.max".to_string()), e))?;
let fields = content.trim().split(' ').collect::<Vec<&str>>();
if fields.len() != 2 {
return Err(Error::from_string(format!("invaild format: {}", content)));
}
let quota = parse_max_value(fields[0])?;
let period = fields[1]
.parse::<u64>()
.map_err(|e| Error::with_cause(ParseError, e))?;
Ok(CfsQuotaAndPeriod { quota, period })
}