1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
pub mod lexer; mod parser; use smallvec::SmallVec; /// A predicate function, used to combine 1 or more predicates /// into a single value #[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Copy, Clone)] pub enum Func { /// `not()` with a configuration predicate. It is true if its predicate /// is false and false if its predicate is true. Not, /// `all()` with a comma separated list of configuration predicates. It /// is false if at least one predicate is false. If there are no predicates, /// it is true. /// /// The associated `usize` is the number of predicates inside the `all()`. All(usize), /// `any()` with a comma separated list of configuration predicates. It /// is true if at least one predicate is true. If there are no predicates, /// it is false. /// /// The associated `usize` is the number of predicates inside the `any()`. Any(usize), } use crate::targets as targ; /// All predicates that pertains to a target, except for `target_feature` #[derive(Clone, Copy, PartialEq, Debug)] pub enum TargetPredicate { /// [target_arch](https://doc.rust-lang.org/reference/conditional-compilation.html#target_arch) Arch(targ::Arch), /// [target_endian](https://doc.rust-lang.org/reference/conditional-compilation.html#target_endian) Endian(targ::Endian), /// [target_env](https://doc.rust-lang.org/reference/conditional-compilation.html#target_env) Env(Option<targ::Env>), /// [target_family](https://doc.rust-lang.org/reference/conditional-compilation.html#target_family) /// This also applies to the bare [`unix` and `windows`](https://doc.rust-lang.org/reference/conditional-compilation.html#unix-and-windows) /// predicates. Family(Option<targ::Family>), /// [target_os](https://doc.rust-lang.org/reference/conditional-compilation.html#target_os) Os(Option<targ::Os>), /// [target_pointer_width](https://doc.rust-lang.org/reference/conditional-compilation.html#target_pointer_width) PointerWidth(u8), /// [target_vendor](https://doc.rust-lang.org/reference/conditional-compilation.html#target_vendor) Vendor(Option<targ::Vendor>), } impl TargetPredicate { /// Returns true of the predicate matches the specified target /// /// ``` /// use cfg_expr::{targets::*, expr::TargetPredicate as tp}; /// let win = get_target_by_triple("x86_64-pc-windows-msvc").unwrap(); /// /// assert!( /// tp::Arch(Arch::x86_64).matches(win) && /// tp::Endian(Endian::little).matches(win) && /// tp::Env(Some(Env::msvc)).matches(win) && /// tp::Family(Some(Family::windows)).matches(win) && /// tp::Os(Some(Os::windows)).matches(win) && /// tp::PointerWidth(64).matches(win) && /// tp::Vendor(Some(Vendor::pc)).matches(win) /// ); /// ``` pub fn matches(self, target: &targ::TargetInfo) -> bool { use TargetPredicate::*; match self { Arch(a) => a == target.arch, Endian(end) => end == target.endian, Env(env) => env == target.env, Family(fam) => fam == target.family, Os(os) => os == target.os, PointerWidth(w) => w == target.pointer_width, Vendor(ven) => ven == target.vendor, } } } /// A single predicate in a `cfg()` expression #[derive(Debug, PartialEq)] pub enum Predicate<'a> { /// A target predicate, with the `target_` prefix Target(TargetPredicate), /// Whether rustc's test harness is [enabled](https://doc.rust-lang.org/reference/conditional-compilation.html#test) Test, /// [Enabled](https://doc.rust-lang.org/reference/conditional-compilation.html#debug_assertions) /// when compiling without optimizations. DebugAssertions, /// [Enabled](https://doc.rust-lang.org/reference/conditional-compilation.html#proc_macro) for /// crates of the proc_macro type. ProcMacro, /// A [`feature = "<name>"`](https://doc.rust-lang.org/nightly/cargo/reference/features.html) Feature(&'a str), /// [target_feature](https://doc.rust-lang.org/reference/conditional-compilation.html#target_feature) TargetFeature(&'a str), /// A generic bare predicate key that doesn't match one of the known options, eg `cfg(bare)` Flag(&'a str), /// A generic key = "value" predicate that doesn't match one of the known options, eg `cfg(foo = "bar")` KeyValue { key: &'a str, val: &'a str }, } #[derive(Clone, PartialEq, Debug)] pub(crate) enum InnerPredicate { Target(TargetPredicate), Test, DebugAssertions, ProcMacro, Feature(std::ops::Range<usize>), TargetFeature(std::ops::Range<usize>), Other { identifier: std::ops::Range<usize>, value: Option<std::ops::Range<usize>>, }, } impl InnerPredicate { fn to_pred<'a>(&self, s: &'a str) -> Predicate<'a> { use InnerPredicate as IP; use Predicate::*; match self { IP::Target(tp) => Target(*tp), IP::Test => Test, IP::DebugAssertions => DebugAssertions, IP::ProcMacro => ProcMacro, IP::Feature(rng) => Feature(&s[rng.clone()]), IP::TargetFeature(rng) => TargetFeature(&s[rng.clone()]), IP::Other { identifier, value } => match value { Some(vs) => KeyValue { key: &s[identifier.clone()], val: &s[vs.clone()], }, None => Flag(&s[identifier.clone()]), }, } } } #[derive(Clone, PartialEq, Debug)] pub(crate) enum ExprNode { Fn(Func), Predicate(InnerPredicate), } /// A parsed `cfg()` expression that can evaluated #[derive(Debug)] pub struct Expression { pub(crate) expr: SmallVec<[ExprNode; 5]>, // We keep the original string around for providing the arbitrary // strings that can make up an expression pub(crate) original: String, } impl Expression { /// An iterator over each predicate in the expression pub fn predicates(&self) -> impl Iterator<Item = Predicate<'_>> { self.expr.iter().filter_map(move |item| match item { ExprNode::Predicate(pred) => { let pred = pred.clone().to_pred(&self.original); Some(pred) } _ => None, }) } /// Evaluates the expression, using the provided closure to determine the value of /// each predicate, which are then combined into a final result depending on the /// functions not(), all(), or any() in the expression. /// /// `eval_predicate` typically returns `bool`, but may return any type that implements /// the `Logic` trait. /// /// ## Examples /// /// ``` /// use cfg_expr::{targets::*, Expression, Predicate}; /// /// let linux_musl = get_target_by_triple("x86_64-unknown-linux-musl").unwrap(); /// /// let expr = Expression::parse(r#"all(not(windows), target_env = "musl", any(target_arch = "x86", target_arch = "x86_64"))"#).unwrap(); /// /// assert!(expr.eval(|pred| { /// match pred { /// Predicate::Target(tp) => tp.matches(linux_musl), /// _ => false, /// } /// })); /// ``` /// /// Returning `Option<bool>`, where `None` indicates the result is unknown: /// /// ``` /// use cfg_expr::{targets::*, Expression, Predicate}; /// /// let expr = Expression::parse(r#"any(target_feature = "sse2", target_env = "musl")"#).unwrap(); /// /// let linux_gnu = get_target_by_triple("x86_64-unknown-linux-gnu").unwrap(); /// let linux_musl = get_target_by_triple("x86_64-unknown-linux-musl").unwrap(); /// /// fn eval(expr: &Expression, target: &TargetInfo) -> Option<bool> { /// expr.eval(|pred| { /// match pred { /// Predicate::Target(tp) => Some(tp.matches(target)), /// Predicate::TargetFeature(_) => None, /// _ => panic!("unexpected predicate"), /// } /// }) /// } /// /// // Whether the target feature is present is unknown, so the whole expression evaluates to /// // None (unknown). /// assert_eq!(eval(&expr, linux_gnu), None); /// /// // Whether the target feature is present is irrelevant for musl, since the any() always /// // evaluates to true. /// assert_eq!(eval(&expr, linux_musl), Some(true)); /// ``` pub fn eval<EP, T>(&self, mut eval_predicate: EP) -> T where EP: FnMut(&Predicate<'_>) -> T, T: Logic, { let mut result_stack = SmallVec::<[T; 8]>::new(); // We store the expression as postfix, so just evaluate each license // requirement in the order it comes, and then combining the previous // results according to each operator as it comes for node in self.expr.iter() { match node { ExprNode::Predicate(pred) => { let pred = pred.to_pred(&self.original); result_stack.push(eval_predicate(&pred)); } ExprNode::Fn(Func::All(count)) => { // all() with a comma separated list of configuration predicates. let mut result = T::top(); for _ in 0..*count { let r = result_stack.pop().unwrap(); result = result.and(r); } result_stack.push(result); } ExprNode::Fn(Func::Any(count)) => { // any() with a comma separated list of configuration predicates. let mut result = T::bottom(); for _ in 0..*count { let r = result_stack.pop().unwrap(); result = result.or(r); } result_stack.push(result); } ExprNode::Fn(Func::Not) => { // not() with a configuration predicate. // It is true if its predicate is false // and false if its predicate is true. let r = result_stack.pop().unwrap(); result_stack.push(r.not()); } } } result_stack.pop().unwrap() } } /// A propositional logic used to evaluate `Expression` instances. /// /// An `Expression` consists of some predicates and the `any`, `all` and `not` operators. An /// implementation of `Logic` defines how the `any`, `all` and `not` operators should be evaluated. pub trait Logic { /// The result of an `all` operation with no operands, akin to Boolean `true`. fn top() -> Self; /// The result of an `any` operation with no operands, akin to Boolean `false`. fn bottom() -> Self; /// `AND`, which corresponds to the `all` operator. fn and(self, other: Self) -> Self; /// `OR`, which corresponds to the `any` operator. fn or(self, other: Self) -> Self; /// `NOT`, which corresponds to the `not` operator. fn not(self) -> Self; } /// A boolean logic. impl Logic for bool { #[inline] fn top() -> Self { true } #[inline] fn bottom() -> Self { false } #[inline] fn and(self, other: Self) -> Self { self && other } #[inline] fn or(self, other: Self) -> Self { self || other } #[inline] fn not(self) -> Self { !self } } /// A three-valued logic -- `None` stands for the value being unknown. /// /// The truth tables for this logic are described on /// [Wikipedia](https://en.wikipedia.org/wiki/Three-valued_logic#Kleene_and_Priest_logics). impl Logic for Option<bool> { #[inline] fn top() -> Self { Some(true) } #[inline] fn bottom() -> Self { Some(false) } #[inline] fn and(self, other: Self) -> Self { match (self, other) { // If either is false, the expression is false. (Some(false), _) => Some(false), (_, Some(false)) => Some(false), // If both are true, the expression is true. (Some(true), Some(true)) => Some(true), // One or both are unknown -- the result is unknown. _ => None, } } #[inline] fn or(self, other: Self) -> Self { match (self, other) { // If either is true, the expression is true. (Some(true), _) => Some(true), (_, Some(true)) => Some(true), // If both are false, the expression is false. (Some(false), Some(false)) => Some(false), // One or both are unknown -- the result is unknown. _ => None, } } #[inline] fn not(self) -> Self { match self { Some(v) => Some(!v), None => None, } } }