1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
use std::{marker::PhantomData, ptr};

/// List element for a doubly linked list.
pub struct ListHead<T> {
    next: *const ListHead<T>,
    prev: *const ListHead<T>,
    value: T,
}

// The present implementation aims to preserve the following invariant (3):
// * The `next` and `prev` pointers are always valid
// * Following the `next` field recursively must always end up to the original `Self`
// * Following the `prev` field recursively must give the exact reverse path as the `next` one
impl<T> ListHead<T> {
    /// Creates a new element with value `val`.
    /// The created element is its own previous and next element.
    /// # Layout
    /// ```text
    /// ┌───┐
    /// │   │
    /// │ ┌─▼──┐
    /// └─┤val ├─┐
    ///   └──▲─┘ │
    ///      │   │
    ///      └───┘
    /// ```
    pub fn new(val: T) -> Box<Self> {
        let mut new = Box::new(Self {
            next: ptr::null(),
            prev: ptr::null(),
            value: val,
        });

        // Preserving invariant (3)
        new.next = &*new;
        new.prev = &*new;

        new
    }

    /// Gets a pointer to the next element.
    pub fn next(&self) -> *const Self {
        self.next
    }

    /// Gets a pointer to the previous element.
    pub fn prev(&self) -> *const Self {
        self.prev
    }

    /// Inserts `new` between `prev` and `next`.
    ///
    /// # Sketch
    /// ```text
    /// ┌────┬──►┌────┬──►┌────┐
    /// │prev│   │new │   │next│
    /// └────┘◄──┴────┘◄──┴────┘
    /// ```
    ///
    /// # Safety
    /// * `next`, `new` and `prev` must be valid pointers.
    /// * `new` must be disconnected from its old place (i.e. with `__del` or `__replace`) before
    /// calling this function otherwise it would break invariant (3).
    unsafe fn __add(new: *mut Self, prev: *mut Self, next: *mut Self) {
        (*next).prev = new;
        (*new).next = next;
        (*new).prev = prev;
        (*prev).next = new;
    }

    /// Disconnects element(s) by connecting the previous and next elements together.
    ///
    /// # Sketch
    /// ```text
    ///      ┌────┬──┐
    ///      │list│  │
    ///  ┌───┴────┘  │
    /// ┌▼───┬──►┌───▼┐
    /// │prev│   │next│
    /// └────┘◄──┴────┘
    /// ```
    /// # Safety
    /// * `next` and `prev` must be valid pointers.
    /// * the element(s) between `next` and `prev` must be dropped or connected somewhere else
    /// after calling this function in order to preserve invariant (3).
    unsafe fn __del(prev: *mut Self, next: *mut Self) {
        (*next).prev = prev;
        (*prev).next = next;
    }

    /// Disconnects an element from the list then returns its value and a pointer to the
    /// next element. The `ListHead` is dropped in the process.
    ///
    /// # Safety
    /// `to_del` must be a valid pointer to a `ListHead` with valid pointers to its next
    /// and previous elements.
    unsafe fn __del_entry(to_del: *mut Self) -> (*const Self, T) {
        let mut next = (*to_del).next;
        if to_del as *const _ != next {
            // `(*to_del).prev` and `(*to_del).next` should be valid according to invariant (3).
            Self::__del((*to_del).prev as *mut _, (*to_del).next as *mut _);
        } else {
            next = ptr::null();
        }

        // `to_del` has to be dropped in order to preserve invariant (3).
        let to_del = Box::from_raw(to_del);
        (next, to_del.value)
    }

    /// Inserts an element behind this one.
    pub fn add(&mut self, new: &mut Self) {
        unsafe {
            // SAFETY: Since `self` and `new` are borrow checked references, it must be true that
            // they are valid pointers. As for the `prev` parameter, it is the same as `self` or
            // another valid pointer according to invariant (3).
            Self::__add(new, self.prev as *mut _, self);
        }
    }

    /// Deletes an element.
    ///
    /// # Safety
    /// The calling party must assert that the `to_del` pointer is valid.
    pub unsafe fn del(to_del: *mut Self) -> (*const Self, T) {
        Self::__del_entry(to_del)
    }

    /// Connects `new` in place of `old` in the list.
    ///
    /// # Sketch
    ///
    /// ## Before
    /// ```text
    ///     ┌────┬──►?
    ///     │new │
    /// ?◄──┴────┘
    /// ┌────┬──►┌────┬──►┌────┐
    /// │prev│   │old │   │next│
    /// └────┘◄──┴────┘◄──┴────┘
    /// ```
    ///
    /// ## After
    /// ```text
    /// ┌───────►┌────┬───────┐
    /// │        │new │       │
    /// │   ┌────┴────┘◄──┐   │
    /// │   │             │   │
    /// ├───▼┐   ┌────┬──►├───▼┐
    /// │prev│   │old │   │next│
    /// └────┘◄──┴────┘   └────┘
    /// ```
    ///
    /// # Safety
    /// * `old` and `next` must be valid pointers
    /// * `old` has to be dropped or connected somewhere else after calling this function in
    /// order to preserve invariant (3).
    unsafe fn __replace(old: *mut Self, new: *mut Self) {
        (*new).next = (*old).next;
        (*((*new).next as *mut Self)).prev = new;
        (*new).prev = (*old).prev;
        (*((*new).prev as *mut Self)).next = new;
    }

    /// Exchanges 2 elements by interchanging their connection to their list (which could be not
    /// the same).
    ///
    /// # Safety
    /// `entry1` and `entry2` must be valid pointers to valid circular linked lists.
    pub unsafe fn swap(entry1: *mut Self, entry2: *mut Self) {
        // `(*entry2).prev` and `(*entry2).next` should be valid according to invariant (3)
        let mut pos = (*entry2).prev;
        Self::__del((*entry2).prev as *mut _, (*entry2).next as *mut _);

        // `entry2` is connected in place of `entry1` which preserve invariant (3).
        Self::__replace(entry1, entry2);

        // in case `entry1` was already behind `entry2`, it is place next to it.
        if pos == entry1 {
            pos = entry2;
        }

        // `pos` and `(*pos).next` are valid according to invariant (3) and `entry1` was just
        // disconnected from its old place.
        Self::__add(entry1 as *mut _, pos as *mut _, (*pos).next as *mut _);
    }

    /// Insert `list` before `next`.
    ///
    /// # Safety
    /// * `list` must be a valid pointer and be part of a valid circular list
    /// * Idem for `next`
    /// * `list` **must not** be an element of the same circular list as `next` without defining a
    /// new head for the orphaned list, otherwise it would cause a memory leak.
    pub unsafe fn add_list(list: *mut Self, next: *mut Self) {
        // `last_of_list` should be valid according to invariant (3)
        let last_of_list = (*list).prev as *mut Self;
        // idem
        let prev = (*next).prev as *mut Self;

        // Preserving invariant (3): as soon as `list` is part of a valid circular list as well as
        // `next`, the connections made here will create 1 or 2 valid circular list(s).

        (*next).prev = last_of_list;
        (*last_of_list).next = next; // The end of `list` is connected to `next`

        (*list).prev = prev;
        (*prev).next = list; // The beginning of `list` is connected to the element before `next`
    }
}

/// Circular list iterator.
pub struct Iter<'life, T> {
    next: *const ListHead<T>,
    _marker: PhantomData<&'life T>,
}
impl<'life, T> Iterator for Iter<'life, T> {
    type Item = &'life T;

    fn next(&mut self) -> Option<Self::Item> {
        // SAFETY: the lifetime `'life` of `self` is bound to the lifetime of the list. We
        // return a `'life` shared reference to the current value which is bound to the list.
        // Plus, the list is circular so next should always be non null if the list is non empty.
        let (current, next) = unsafe {
            let r = &*self.next;
            (&r.value, (*r).next)
        };
        self.next = next;
        Some(current)
    }
}
impl<'life, T> Iter<'life, T> {
    pub fn new(first: *const ListHead<T>) -> Self {
        Self {
            next: first,
            _marker: PhantomData::default(),
        }
    }
}

/// Circular list iterator with mutability.
pub struct IterMut<'life, T> {
    next: *mut ListHead<T>,
    _marker: PhantomData<&'life T>,
}
impl<'life, T> Iterator for IterMut<'life, T> {
    type Item = &'life mut T;

    fn next(&mut self) -> Option<Self::Item> {
        // SAFETY: the lifetime `'life` of `self` is bound to the lifetime of the list. We
        // return a `'life` shared reference to the current value which is bound to the list.
        // Plus, the list is circular so next should always be non null if the list is non empty.
        let (current, next) = unsafe {
            let r = &mut *self.next;
            (&mut r.value, (*r).next as *mut _)
        };
        self.next = next;
        Some(current)
    }
}
impl<'life, T> IterMut<'life, T> {
    pub fn new(first: *mut ListHead<T>) -> Self {
        Self {
            next: first,
            _marker: PhantomData::default(),
        }
    }
}