#[doc = r" Value read from the register"]
pub struct R {
bits: u32,
}
#[doc = r" Value to write to the register"]
pub struct W {
bits: u32,
}
impl super::IMSC {
#[doc = r" Modifies the contents of the register"]
#[inline]
pub fn modify<F>(&self, f: F)
where
for<'w> F: FnOnce(&R, &'w mut W) -> &'w mut W,
{
let bits = self.register.get();
let r = R { bits: bits };
let mut w = W { bits: bits };
f(&r, &mut w);
self.register.set(w.bits);
}
#[doc = r" Reads the contents of the register"]
#[inline]
pub fn read(&self) -> R {
R {
bits: self.register.get(),
}
}
#[doc = r" Writes to the register"]
#[inline]
pub fn write<F>(&self, f: F)
where
F: FnOnce(&mut W) -> &mut W,
{
let mut w = W::reset_value();
f(&mut w);
self.register.set(w.bits);
}
#[doc = r" Writes the reset value to the register"]
#[inline]
pub fn reset(&self) {
self.write(|w| w)
}
}
#[doc = r" Value of the field"]
pub struct RESERVED12R {
bits: u32,
}
impl RESERVED12R {
#[doc = r" Value of the field as raw bits"]
#[inline]
pub fn bits(&self) -> u32 {
self.bits
}
}
#[doc = r" Value of the field"]
pub struct EOTIMR {
bits: bool,
}
impl EOTIMR {
#[doc = r" Value of the field as raw bits"]
#[inline]
pub fn bit(&self) -> bool {
self.bits
}
#[doc = r" Returns `true` if the bit is clear (0)"]
#[inline]
pub fn bit_is_clear(&self) -> bool {
!self.bit()
}
#[doc = r" Returns `true` if the bit is set (1)"]
#[inline]
pub fn bit_is_set(&self) -> bool {
self.bit()
}
}
#[doc = r" Value of the field"]
pub struct OEIMR {
bits: bool,
}
impl OEIMR {
#[doc = r" Value of the field as raw bits"]
#[inline]
pub fn bit(&self) -> bool {
self.bits
}
#[doc = r" Returns `true` if the bit is clear (0)"]
#[inline]
pub fn bit_is_clear(&self) -> bool {
!self.bit()
}
#[doc = r" Returns `true` if the bit is set (1)"]
#[inline]
pub fn bit_is_set(&self) -> bool {
self.bit()
}
}
#[doc = r" Value of the field"]
pub struct BEIMR {
bits: bool,
}
impl BEIMR {
#[doc = r" Value of the field as raw bits"]
#[inline]
pub fn bit(&self) -> bool {
self.bits
}
#[doc = r" Returns `true` if the bit is clear (0)"]
#[inline]
pub fn bit_is_clear(&self) -> bool {
!self.bit()
}
#[doc = r" Returns `true` if the bit is set (1)"]
#[inline]
pub fn bit_is_set(&self) -> bool {
self.bit()
}
}
#[doc = r" Value of the field"]
pub struct PEIMR {
bits: bool,
}
impl PEIMR {
#[doc = r" Value of the field as raw bits"]
#[inline]
pub fn bit(&self) -> bool {
self.bits
}
#[doc = r" Returns `true` if the bit is clear (0)"]
#[inline]
pub fn bit_is_clear(&self) -> bool {
!self.bit()
}
#[doc = r" Returns `true` if the bit is set (1)"]
#[inline]
pub fn bit_is_set(&self) -> bool {
self.bit()
}
}
#[doc = r" Value of the field"]
pub struct FEIMR {
bits: bool,
}
impl FEIMR {
#[doc = r" Value of the field as raw bits"]
#[inline]
pub fn bit(&self) -> bool {
self.bits
}
#[doc = r" Returns `true` if the bit is clear (0)"]
#[inline]
pub fn bit_is_clear(&self) -> bool {
!self.bit()
}
#[doc = r" Returns `true` if the bit is set (1)"]
#[inline]
pub fn bit_is_set(&self) -> bool {
self.bit()
}
}
#[doc = r" Value of the field"]
pub struct RTIMR {
bits: bool,
}
impl RTIMR {
#[doc = r" Value of the field as raw bits"]
#[inline]
pub fn bit(&self) -> bool {
self.bits
}
#[doc = r" Returns `true` if the bit is clear (0)"]
#[inline]
pub fn bit_is_clear(&self) -> bool {
!self.bit()
}
#[doc = r" Returns `true` if the bit is set (1)"]
#[inline]
pub fn bit_is_set(&self) -> bool {
self.bit()
}
}
#[doc = r" Value of the field"]
pub struct TXIMR {
bits: bool,
}
impl TXIMR {
#[doc = r" Value of the field as raw bits"]
#[inline]
pub fn bit(&self) -> bool {
self.bits
}
#[doc = r" Returns `true` if the bit is clear (0)"]
#[inline]
pub fn bit_is_clear(&self) -> bool {
!self.bit()
}
#[doc = r" Returns `true` if the bit is set (1)"]
#[inline]
pub fn bit_is_set(&self) -> bool {
self.bit()
}
}
#[doc = r" Value of the field"]
pub struct RXIMR {
bits: bool,
}
impl RXIMR {
#[doc = r" Value of the field as raw bits"]
#[inline]
pub fn bit(&self) -> bool {
self.bits
}
#[doc = r" Returns `true` if the bit is clear (0)"]
#[inline]
pub fn bit_is_clear(&self) -> bool {
!self.bit()
}
#[doc = r" Returns `true` if the bit is set (1)"]
#[inline]
pub fn bit_is_set(&self) -> bool {
self.bit()
}
}
#[doc = r" Value of the field"]
pub struct RESERVED2R {
bits: u8,
}
impl RESERVED2R {
#[doc = r" Value of the field as raw bits"]
#[inline]
pub fn bits(&self) -> u8 {
self.bits
}
}
#[doc = r" Value of the field"]
pub struct CTSMIMR {
bits: bool,
}
impl CTSMIMR {
#[doc = r" Value of the field as raw bits"]
#[inline]
pub fn bit(&self) -> bool {
self.bits
}
#[doc = r" Returns `true` if the bit is clear (0)"]
#[inline]
pub fn bit_is_clear(&self) -> bool {
!self.bit()
}
#[doc = r" Returns `true` if the bit is set (1)"]
#[inline]
pub fn bit_is_set(&self) -> bool {
self.bit()
}
}
#[doc = r" Value of the field"]
pub struct RESERVED0R {
bits: bool,
}
impl RESERVED0R {
#[doc = r" Value of the field as raw bits"]
#[inline]
pub fn bit(&self) -> bool {
self.bits
}
#[doc = r" Returns `true` if the bit is clear (0)"]
#[inline]
pub fn bit_is_clear(&self) -> bool {
!self.bit()
}
#[doc = r" Returns `true` if the bit is set (1)"]
#[inline]
pub fn bit_is_set(&self) -> bool {
self.bit()
}
}
#[doc = r" Proxy"]
pub struct _RESERVED12W<'a> {
w: &'a mut W,
}
impl<'a> _RESERVED12W<'a> {
#[doc = r" Writes raw bits to the field"]
#[inline]
pub unsafe fn bits(self, value: u32) -> &'a mut W {
const MASK: u32 = 1048575;
const OFFSET: u8 = 12;
self.w.bits &= !((MASK as u32) << OFFSET);
self.w.bits |= ((value & MASK) as u32) << OFFSET;
self.w
}
}
#[doc = r" Proxy"]
pub struct _EOTIMW<'a> {
w: &'a mut W,
}
impl<'a> _EOTIMW<'a> {
#[doc = r" Sets the field bit"]
pub fn set_bit(self) -> &'a mut W {
self.bit(true)
}
#[doc = r" Clears the field bit"]
pub fn clear_bit(self) -> &'a mut W {
self.bit(false)
}
#[doc = r" Writes raw bits to the field"]
#[inline]
pub fn bit(self, value: bool) -> &'a mut W {
const MASK: bool = true;
const OFFSET: u8 = 11;
self.w.bits &= !((MASK as u32) << OFFSET);
self.w.bits |= ((value & MASK) as u32) << OFFSET;
self.w
}
}
#[doc = r" Proxy"]
pub struct _OEIMW<'a> {
w: &'a mut W,
}
impl<'a> _OEIMW<'a> {
#[doc = r" Sets the field bit"]
pub fn set_bit(self) -> &'a mut W {
self.bit(true)
}
#[doc = r" Clears the field bit"]
pub fn clear_bit(self) -> &'a mut W {
self.bit(false)
}
#[doc = r" Writes raw bits to the field"]
#[inline]
pub fn bit(self, value: bool) -> &'a mut W {
const MASK: bool = true;
const OFFSET: u8 = 10;
self.w.bits &= !((MASK as u32) << OFFSET);
self.w.bits |= ((value & MASK) as u32) << OFFSET;
self.w
}
}
#[doc = r" Proxy"]
pub struct _BEIMW<'a> {
w: &'a mut W,
}
impl<'a> _BEIMW<'a> {
#[doc = r" Sets the field bit"]
pub fn set_bit(self) -> &'a mut W {
self.bit(true)
}
#[doc = r" Clears the field bit"]
pub fn clear_bit(self) -> &'a mut W {
self.bit(false)
}
#[doc = r" Writes raw bits to the field"]
#[inline]
pub fn bit(self, value: bool) -> &'a mut W {
const MASK: bool = true;
const OFFSET: u8 = 9;
self.w.bits &= !((MASK as u32) << OFFSET);
self.w.bits |= ((value & MASK) as u32) << OFFSET;
self.w
}
}
#[doc = r" Proxy"]
pub struct _PEIMW<'a> {
w: &'a mut W,
}
impl<'a> _PEIMW<'a> {
#[doc = r" Sets the field bit"]
pub fn set_bit(self) -> &'a mut W {
self.bit(true)
}
#[doc = r" Clears the field bit"]
pub fn clear_bit(self) -> &'a mut W {
self.bit(false)
}
#[doc = r" Writes raw bits to the field"]
#[inline]
pub fn bit(self, value: bool) -> &'a mut W {
const MASK: bool = true;
const OFFSET: u8 = 8;
self.w.bits &= !((MASK as u32) << OFFSET);
self.w.bits |= ((value & MASK) as u32) << OFFSET;
self.w
}
}
#[doc = r" Proxy"]
pub struct _FEIMW<'a> {
w: &'a mut W,
}
impl<'a> _FEIMW<'a> {
#[doc = r" Sets the field bit"]
pub fn set_bit(self) -> &'a mut W {
self.bit(true)
}
#[doc = r" Clears the field bit"]
pub fn clear_bit(self) -> &'a mut W {
self.bit(false)
}
#[doc = r" Writes raw bits to the field"]
#[inline]
pub fn bit(self, value: bool) -> &'a mut W {
const MASK: bool = true;
const OFFSET: u8 = 7;
self.w.bits &= !((MASK as u32) << OFFSET);
self.w.bits |= ((value & MASK) as u32) << OFFSET;
self.w
}
}
#[doc = r" Proxy"]
pub struct _RTIMW<'a> {
w: &'a mut W,
}
impl<'a> _RTIMW<'a> {
#[doc = r" Sets the field bit"]
pub fn set_bit(self) -> &'a mut W {
self.bit(true)
}
#[doc = r" Clears the field bit"]
pub fn clear_bit(self) -> &'a mut W {
self.bit(false)
}
#[doc = r" Writes raw bits to the field"]
#[inline]
pub fn bit(self, value: bool) -> &'a mut W {
const MASK: bool = true;
const OFFSET: u8 = 6;
self.w.bits &= !((MASK as u32) << OFFSET);
self.w.bits |= ((value & MASK) as u32) << OFFSET;
self.w
}
}
#[doc = r" Proxy"]
pub struct _TXIMW<'a> {
w: &'a mut W,
}
impl<'a> _TXIMW<'a> {
#[doc = r" Sets the field bit"]
pub fn set_bit(self) -> &'a mut W {
self.bit(true)
}
#[doc = r" Clears the field bit"]
pub fn clear_bit(self) -> &'a mut W {
self.bit(false)
}
#[doc = r" Writes raw bits to the field"]
#[inline]
pub fn bit(self, value: bool) -> &'a mut W {
const MASK: bool = true;
const OFFSET: u8 = 5;
self.w.bits &= !((MASK as u32) << OFFSET);
self.w.bits |= ((value & MASK) as u32) << OFFSET;
self.w
}
}
#[doc = r" Proxy"]
pub struct _RXIMW<'a> {
w: &'a mut W,
}
impl<'a> _RXIMW<'a> {
#[doc = r" Sets the field bit"]
pub fn set_bit(self) -> &'a mut W {
self.bit(true)
}
#[doc = r" Clears the field bit"]
pub fn clear_bit(self) -> &'a mut W {
self.bit(false)
}
#[doc = r" Writes raw bits to the field"]
#[inline]
pub fn bit(self, value: bool) -> &'a mut W {
const MASK: bool = true;
const OFFSET: u8 = 4;
self.w.bits &= !((MASK as u32) << OFFSET);
self.w.bits |= ((value & MASK) as u32) << OFFSET;
self.w
}
}
#[doc = r" Proxy"]
pub struct _RESERVED2W<'a> {
w: &'a mut W,
}
impl<'a> _RESERVED2W<'a> {
#[doc = r" Writes raw bits to the field"]
#[inline]
pub unsafe fn bits(self, value: u8) -> &'a mut W {
const MASK: u8 = 3;
const OFFSET: u8 = 2;
self.w.bits &= !((MASK as u32) << OFFSET);
self.w.bits |= ((value & MASK) as u32) << OFFSET;
self.w
}
}
#[doc = r" Proxy"]
pub struct _CTSMIMW<'a> {
w: &'a mut W,
}
impl<'a> _CTSMIMW<'a> {
#[doc = r" Sets the field bit"]
pub fn set_bit(self) -> &'a mut W {
self.bit(true)
}
#[doc = r" Clears the field bit"]
pub fn clear_bit(self) -> &'a mut W {
self.bit(false)
}
#[doc = r" Writes raw bits to the field"]
#[inline]
pub fn bit(self, value: bool) -> &'a mut W {
const MASK: bool = true;
const OFFSET: u8 = 1;
self.w.bits &= !((MASK as u32) << OFFSET);
self.w.bits |= ((value & MASK) as u32) << OFFSET;
self.w
}
}
#[doc = r" Proxy"]
pub struct _RESERVED0W<'a> {
w: &'a mut W,
}
impl<'a> _RESERVED0W<'a> {
#[doc = r" Sets the field bit"]
pub fn set_bit(self) -> &'a mut W {
self.bit(true)
}
#[doc = r" Clears the field bit"]
pub fn clear_bit(self) -> &'a mut W {
self.bit(false)
}
#[doc = r" Writes raw bits to the field"]
#[inline]
pub fn bit(self, value: bool) -> &'a mut W {
const MASK: bool = true;
const OFFSET: u8 = 0;
self.w.bits &= !((MASK as u32) << OFFSET);
self.w.bits |= ((value & MASK) as u32) << OFFSET;
self.w
}
}
impl R {
#[doc = r" Value of the register as raw bits"]
#[inline]
pub fn bits(&self) -> u32 {
self.bits
}
#[doc = "Bits 12:31 - 31:12\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
#[inline]
pub fn reserved12(&self) -> RESERVED12R {
let bits = {
const MASK: u32 = 1048575;
const OFFSET: u8 = 12;
((self.bits >> OFFSET) & MASK as u32) as u32
};
RESERVED12R { bits }
}
#[doc = "Bit 11 - 11:11\\] End of Transmission interrupt mask. A read returns the current mask for UART's EoT interrupt. On a write of 1, the mask of the EoT interrupt is set which means the interrupt state will be reflected in MIS.EOTMIS. A write of 0 clears the mask which means MIS.EOTMIS will not reflect the interrupt."]
#[inline]
pub fn eotim(&self) -> EOTIMR {
let bits = {
const MASK: bool = true;
const OFFSET: u8 = 11;
((self.bits >> OFFSET) & MASK as u32) != 0
};
EOTIMR { bits }
}
#[doc = "Bit 10 - 10:10\\] Overrun error interrupt mask. A read returns the current mask for UART's overrun error interrupt. On a write of 1, the mask of the overrun error interrupt is set which means the interrupt state will be reflected in MIS.OEMIS. A write of 0 clears the mask which means MIS.OEMIS will not reflect the interrupt."]
#[inline]
pub fn oeim(&self) -> OEIMR {
let bits = {
const MASK: bool = true;
const OFFSET: u8 = 10;
((self.bits >> OFFSET) & MASK as u32) != 0
};
OEIMR { bits }
}
#[doc = "Bit 9 - 9:9\\] Break error interrupt mask. A read returns the current mask for UART's break error interrupt. On a write of 1, the mask of the overrun error interrupt is set which means the interrupt state will be reflected in MIS.BEMIS. A write of 0 clears the mask which means MIS.BEMIS will not reflect the interrupt."]
#[inline]
pub fn beim(&self) -> BEIMR {
let bits = {
const MASK: bool = true;
const OFFSET: u8 = 9;
((self.bits >> OFFSET) & MASK as u32) != 0
};
BEIMR { bits }
}
#[doc = "Bit 8 - 8:8\\] Parity error interrupt mask. A read returns the current mask for UART's parity error interrupt. On a write of 1, the mask of the overrun error interrupt is set which means the interrupt state will be reflected in MIS.PEMIS. A write of 0 clears the mask which means MIS.PEMIS will not reflect the interrupt."]
#[inline]
pub fn peim(&self) -> PEIMR {
let bits = {
const MASK: bool = true;
const OFFSET: u8 = 8;
((self.bits >> OFFSET) & MASK as u32) != 0
};
PEIMR { bits }
}
#[doc = "Bit 7 - 7:7\\] Framing error interrupt mask. A read returns the current mask for UART's framing error interrupt. On a write of 1, the mask of the overrun error interrupt is set which means the interrupt state will be reflected in MIS.FEMIS. A write of 0 clears the mask which means MIS.FEMIS will not reflect the interrupt."]
#[inline]
pub fn feim(&self) -> FEIMR {
let bits = {
const MASK: bool = true;
const OFFSET: u8 = 7;
((self.bits >> OFFSET) & MASK as u32) != 0
};
FEIMR { bits }
}
#[doc = "Bit 6 - 6:6\\] Receive timeout interrupt mask. A read returns the current mask for UART's receive timeout interrupt. On a write of 1, the mask of the overrun error interrupt is set which means the interrupt state will be reflected in MIS.RTMIS. A write of 0 clears the mask which means this bitfield will not reflect the interrupt. The raw interrupt for receive timeout RIS.RTRIS cannot be set unless the mask is set (RTIM = 1). This is because the mask acts as an enable for power saving. That is, the same status can be read from MIS.RTMIS and RIS.RTRIS."]
#[inline]
pub fn rtim(&self) -> RTIMR {
let bits = {
const MASK: bool = true;
const OFFSET: u8 = 6;
((self.bits >> OFFSET) & MASK as u32) != 0
};
RTIMR { bits }
}
#[doc = "Bit 5 - 5:5\\] Transmit interrupt mask. A read returns the current mask for UART's transmit interrupt. On a write of 1, the mask of the overrun error interrupt is set which means the interrupt state will be reflected in MIS.TXMIS. A write of 0 clears the mask which means MIS.TXMIS will not reflect the interrupt."]
#[inline]
pub fn txim(&self) -> TXIMR {
let bits = {
const MASK: bool = true;
const OFFSET: u8 = 5;
((self.bits >> OFFSET) & MASK as u32) != 0
};
TXIMR { bits }
}
#[doc = "Bit 4 - 4:4\\] Receive interrupt mask. A read returns the current mask for UART's receive interrupt. On a write of 1, the mask of the overrun error interrupt is set which means the interrupt state will be reflected in MIS.RXMIS. A write of 0 clears the mask which means MIS.RXMIS will not reflect the interrupt."]
#[inline]
pub fn rxim(&self) -> RXIMR {
let bits = {
const MASK: bool = true;
const OFFSET: u8 = 4;
((self.bits >> OFFSET) & MASK as u32) != 0
};
RXIMR { bits }
}
#[doc = "Bits 2:3 - 3:2\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
#[inline]
pub fn reserved2(&self) -> RESERVED2R {
let bits = {
const MASK: u8 = 3;
const OFFSET: u8 = 2;
((self.bits >> OFFSET) & MASK as u32) as u8
};
RESERVED2R { bits }
}
#[doc = "Bit 1 - 1:1\\] Clear to Send (CTS) modem interrupt mask. A read returns the current mask for UART's clear to send interrupt. On a write of 1, the mask of the overrun error interrupt is set which means the interrupt state will be reflected in MIS.CTSMMIS. A write of 0 clears the mask which means MIS.CTSMMIS will not reflect the interrupt."]
#[inline]
pub fn ctsmim(&self) -> CTSMIMR {
let bits = {
const MASK: bool = true;
const OFFSET: u8 = 1;
((self.bits >> OFFSET) & MASK as u32) != 0
};
CTSMIMR { bits }
}
#[doc = "Bit 0 - 0:0\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
#[inline]
pub fn reserved0(&self) -> RESERVED0R {
let bits = {
const MASK: bool = true;
const OFFSET: u8 = 0;
((self.bits >> OFFSET) & MASK as u32) != 0
};
RESERVED0R { bits }
}
}
impl W {
#[doc = r" Reset value of the register"]
#[inline]
pub fn reset_value() -> W {
W { bits: 0 }
}
#[doc = r" Writes raw bits to the register"]
#[inline]
pub unsafe fn bits(&mut self, bits: u32) -> &mut Self {
self.bits = bits;
self
}
#[doc = "Bits 12:31 - 31:12\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
#[inline]
pub fn reserved12(&mut self) -> _RESERVED12W {
_RESERVED12W { w: self }
}
#[doc = "Bit 11 - 11:11\\] End of Transmission interrupt mask. A read returns the current mask for UART's EoT interrupt. On a write of 1, the mask of the EoT interrupt is set which means the interrupt state will be reflected in MIS.EOTMIS. A write of 0 clears the mask which means MIS.EOTMIS will not reflect the interrupt."]
#[inline]
pub fn eotim(&mut self) -> _EOTIMW {
_EOTIMW { w: self }
}
#[doc = "Bit 10 - 10:10\\] Overrun error interrupt mask. A read returns the current mask for UART's overrun error interrupt. On a write of 1, the mask of the overrun error interrupt is set which means the interrupt state will be reflected in MIS.OEMIS. A write of 0 clears the mask which means MIS.OEMIS will not reflect the interrupt."]
#[inline]
pub fn oeim(&mut self) -> _OEIMW {
_OEIMW { w: self }
}
#[doc = "Bit 9 - 9:9\\] Break error interrupt mask. A read returns the current mask for UART's break error interrupt. On a write of 1, the mask of the overrun error interrupt is set which means the interrupt state will be reflected in MIS.BEMIS. A write of 0 clears the mask which means MIS.BEMIS will not reflect the interrupt."]
#[inline]
pub fn beim(&mut self) -> _BEIMW {
_BEIMW { w: self }
}
#[doc = "Bit 8 - 8:8\\] Parity error interrupt mask. A read returns the current mask for UART's parity error interrupt. On a write of 1, the mask of the overrun error interrupt is set which means the interrupt state will be reflected in MIS.PEMIS. A write of 0 clears the mask which means MIS.PEMIS will not reflect the interrupt."]
#[inline]
pub fn peim(&mut self) -> _PEIMW {
_PEIMW { w: self }
}
#[doc = "Bit 7 - 7:7\\] Framing error interrupt mask. A read returns the current mask for UART's framing error interrupt. On a write of 1, the mask of the overrun error interrupt is set which means the interrupt state will be reflected in MIS.FEMIS. A write of 0 clears the mask which means MIS.FEMIS will not reflect the interrupt."]
#[inline]
pub fn feim(&mut self) -> _FEIMW {
_FEIMW { w: self }
}
#[doc = "Bit 6 - 6:6\\] Receive timeout interrupt mask. A read returns the current mask for UART's receive timeout interrupt. On a write of 1, the mask of the overrun error interrupt is set which means the interrupt state will be reflected in MIS.RTMIS. A write of 0 clears the mask which means this bitfield will not reflect the interrupt. The raw interrupt for receive timeout RIS.RTRIS cannot be set unless the mask is set (RTIM = 1). This is because the mask acts as an enable for power saving. That is, the same status can be read from MIS.RTMIS and RIS.RTRIS."]
#[inline]
pub fn rtim(&mut self) -> _RTIMW {
_RTIMW { w: self }
}
#[doc = "Bit 5 - 5:5\\] Transmit interrupt mask. A read returns the current mask for UART's transmit interrupt. On a write of 1, the mask of the overrun error interrupt is set which means the interrupt state will be reflected in MIS.TXMIS. A write of 0 clears the mask which means MIS.TXMIS will not reflect the interrupt."]
#[inline]
pub fn txim(&mut self) -> _TXIMW {
_TXIMW { w: self }
}
#[doc = "Bit 4 - 4:4\\] Receive interrupt mask. A read returns the current mask for UART's receive interrupt. On a write of 1, the mask of the overrun error interrupt is set which means the interrupt state will be reflected in MIS.RXMIS. A write of 0 clears the mask which means MIS.RXMIS will not reflect the interrupt."]
#[inline]
pub fn rxim(&mut self) -> _RXIMW {
_RXIMW { w: self }
}
#[doc = "Bits 2:3 - 3:2\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
#[inline]
pub fn reserved2(&mut self) -> _RESERVED2W {
_RESERVED2W { w: self }
}
#[doc = "Bit 1 - 1:1\\] Clear to Send (CTS) modem interrupt mask. A read returns the current mask for UART's clear to send interrupt. On a write of 1, the mask of the overrun error interrupt is set which means the interrupt state will be reflected in MIS.CTSMMIS. A write of 0 clears the mask which means MIS.CTSMMIS will not reflect the interrupt."]
#[inline]
pub fn ctsmim(&mut self) -> _CTSMIMW {
_CTSMIMW { w: self }
}
#[doc = "Bit 0 - 0:0\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
#[inline]
pub fn reserved0(&mut self) -> _RESERVED0W {
_RESERVED0W { w: self }
}
}