cc13x2-cc26x2-pac 0.1.0

Peripheral access API for cc13x2 and cc26x2 microcontrollers
Documentation
#[doc = r" Value read from the register"]
pub struct R {
    bits: u32,
}
#[doc = r" Value to write to the register"]
pub struct W {
    bits: u32,
}
impl super::FSM_PGM128 {
    #[doc = r" Modifies the contents of the register"]
    #[inline]
    pub fn modify<F>(&self, f: F)
    where
        for<'w> F: FnOnce(&R, &'w mut W) -> &'w mut W,
    {
        let bits = self.register.get();
        let r = R { bits: bits };
        let mut w = W { bits: bits };
        f(&r, &mut w);
        self.register.set(w.bits);
    }
    #[doc = r" Reads the contents of the register"]
    #[inline]
    pub fn read(&self) -> R {
        R {
            bits: self.register.get(),
        }
    }
    #[doc = r" Writes to the register"]
    #[inline]
    pub fn write<F>(&self, f: F)
    where
        F: FnOnce(&mut W) -> &mut W,
    {
        let mut w = W::reset_value();
        f(&mut w);
        self.register.set(w.bits);
    }
    #[doc = r" Writes the reset value to the register"]
    #[inline]
    pub fn reset(&self) {
        self.write(|w| w)
    }
}
#[doc = r" Value of the field"]
pub struct EN_PGM128R {
    bits: bool,
}
impl EN_PGM128R {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Proxy"]
pub struct _EN_PGM128W<'a> {
    w: &'a mut W,
}
impl<'a> _EN_PGM128W<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 0;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
impl R {
    #[doc = r" Value of the register as raw bits"]
    #[inline]
    pub fn bits(&self) -> u32 {
        self.bits
    }
    #[doc = "Bit 0 - 0:0\\] 1: Enables 128-bit wide programming. This mode requires programming supply voltage to be greater than 2.5v at the Flash Pump. The primary use case for this mode is manufacturing test for test time reduction. 0: 64-bit wide programming. Valid at any programming voltage. A 128-bit word is divided into two 64-bit words for programming. \\[default\\] This register is write protected with the FSM_WR_ENA register."]
    #[inline]
    pub fn en_pgm128(&self) -> EN_PGM128R {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 0;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        EN_PGM128R { bits }
    }
}
impl W {
    #[doc = r" Reset value of the register"]
    #[inline]
    pub fn reset_value() -> W {
        W { bits: 0 }
    }
    #[doc = r" Writes raw bits to the register"]
    #[inline]
    pub unsafe fn bits(&mut self, bits: u32) -> &mut Self {
        self.bits = bits;
        self
    }
    #[doc = "Bit 0 - 0:0\\] 1: Enables 128-bit wide programming. This mode requires programming supply voltage to be greater than 2.5v at the Flash Pump. The primary use case for this mode is manufacturing test for test time reduction. 0: 64-bit wide programming. Valid at any programming voltage. A 128-bit word is divided into two 64-bit words for programming. \\[default\\] This register is write protected with the FSM_WR_ENA register."]
    #[inline]
    pub fn en_pgm128(&mut self) -> _EN_PGM128W {
        _EN_PGM128W { w: self }
    }
}