cano 0.6.1

Simple & Fast Async Workflows in Rust - Build data processing pipelines with Tasks and Nodes
Documentation

Cano: Async Data & AI Workflows in Rust

Crates.io Documentation Downloads License CI

Async workflow engine with built-in scheduling, retry logic, and state machine semantics.

Cano is an async workflow engine for Rust that manages complex processing through composable workflows. It can be used for data processing, AI inference workflows, and background jobs. Cano provides a simple, fast and type-safe API for defining workflows with retry strategies, scheduling capabilities, and shared state management.

The engine is built on three core concepts: Tasks and Nodes to encapsulate business logic, Workflows to manage state transitions, and Schedulers to run workflows on a schedule.

The Node API is inspired by the PocketFlow project, adapted for Rust's async ecosystem.

Features

  • Task & Node APIs: Single Task trait for simple processing logic, or Node trait for structured three-phase lifecycle
  • State Machines: Type-safe enum-driven state transitions with compile-time checking
  • Retry Strategies: None, fixed delays, and exponential backoff with jitter (for both Tasks and Nodes)
  • Flexible Storage: Built-in MemoryStore or custom struct types for data sharing
  • Workflow Scheduling (optional scheduler feature): Built-in scheduler with intervals, cron schedules, and manual triggers
  • Concurrent Execution: Execute multiple workflow instances in parallel with timeout strategies
  • Observability (optional tracing feature): Comprehensive tracing and observability for workflow execution
  • All Features (optional all feature): Convenience feature that enables both scheduler and tracing
  • Performance: Minimal overhead with direct execution and zero-cost abstractions

Getting Started

Add Cano to your Cargo.toml:

[dependencies]
cano = "0.6"
async-trait = "0.1"
tokio = { version = "1", features = ["macros", "sync", "time", "rt-multi-thread"] }

For scheduler support:

[dependencies]
cano = { version = "0.6", features = ["scheduler"] }

For observability and tracing:

[dependencies]
cano = { version = "0.6", features = ["tracing"] }
tracing = "0.1"

Or use the all feature for convenience:

[dependencies]
cano = { version = "0.6", features = ["all"] }
tracing = "0.1"

Basic Example

use async_trait::async_trait;
use cano::prelude::*;

// Define your workflow states
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
enum WorkflowState {
    Start,
    Process,
    Complete,
}

// Simple Task implementation - single run method
struct SimpleTask;

#[async_trait]
impl Task<WorkflowState> for SimpleTask {
    fn config(&self) -> TaskConfig {
        // Configure retry behavior for resilience
        TaskConfig::new().with_exponential_retry(2)
    }

    async fn run(&self, store: &MemoryStore) -> Result<WorkflowState, CanoError> {
        let input: String = store.get("input").unwrap_or_default();
        println!("Processing: {input}");
        store.put("result", "task_processed".to_string())?;
        Ok(WorkflowState::Process)
    }
}

// Structured Node implementation - three-phase lifecycle
struct ProcessorNode;

#[async_trait]
impl Node<WorkflowState> for ProcessorNode {
    type PrepResult = String;
    type ExecResult = bool;

    async fn prep(&self, store: &MemoryStore) -> Result<Self::PrepResult, CanoError> {
        let input: String = store.get("result").unwrap_or_default();
        Ok(input)
    }

    async fn exec(&self, prep_res: Self::PrepResult) -> Self::ExecResult {
        println!("Node processing: {prep_res}");
        true // Success
    }

    async fn post(&self, store: &MemoryStore, exec_res: Self::ExecResult) 
        -> Result<WorkflowState, CanoError> {
        if exec_res {
            store.put("final_result", "node_processed".to_string())?;
            Ok(WorkflowState::Complete)
        } else {
            Ok(WorkflowState::Process) // Retry
        }
    }
}

#[tokio::main]
async fn main() -> Result<(), CanoError> {
    // Create workflow - can mix Tasks and Nodes
    let mut workflow = Workflow::new(WorkflowState::Start);
    workflow.register(WorkflowState::Start, SimpleTask)        // Task
        .register(WorkflowState::Process, ProcessorNode)       // Node
        .add_exit_state(WorkflowState::Complete);
    
    // Create store and run workflow
    let store = MemoryStore::new();
    store.put("input", "Hello Cano!".to_string())?;
    
    let result = workflow.orchestrate(&store).await?;
    println!("Workflow completed: {result:?}");
    
    Ok(())
}

Core Concepts

1. Tasks & Nodes - Processing Units

Cano provides two approaches for implementing processing logic:

Tasks - Simple & Flexible

A Task provides a simplified interface with a single run method. Use tasks when you want simplicity and direct control over the execution logic. Both Task and Node support retry strategies.

struct DataProcessor;

#[async_trait]
impl Task<String> for DataProcessor {
    fn config(&self) -> TaskConfig {
        // Configure retry behavior (optional)
        TaskConfig::new().with_fixed_retry(3, Duration::from_secs(1))
    }

    async fn run(&self, store: &MemoryStore) -> Result<String, CanoError> {
        // Load data, process, and store results in one place
        Ok("complete".to_string())
    }
}

Nodes - Structured & Resilient

A Node implements a structured three-phase lifecycle with built-in retry capabilities. Nodes are ideal for complex operations where separating data loading, execution, and result handling improves clarity and maintainability.

  1. Prep: Load data, validate inputs, setup resources
  2. Exec: Core processing logic (with automatic retry support)
  3. Post: Store results, cleanup, determine next action
struct EmailProcessor;

#[async_trait]
impl Node<String> for EmailProcessor {
    type PrepResult = String;
    type ExecResult = bool;

    async fn prep(&self, store: &MemoryStore) -> Result<Self::PrepResult, CanoError> {
        let email: String = store.get("email").unwrap_or_default();
        Ok(email)
    }

    async fn exec(&self, email: Self::PrepResult) -> Self::ExecResult {
        println!("Sending email to: {email}");
        true // Success
    }

    async fn post(&self, store: &MemoryStore, success: Self::ExecResult) 
        -> Result<String, CanoError> {
        if success {
            Ok("complete".to_string())
        } else {
            Ok("failed".to_string())
        }
    }
}

Compatibility & When to Use Which

  • Every Node automatically implements Task - you can use any Node wherever Tasks are accepted.
  • Use Task for: Simple processing, quick prototypes, or when you prefer a single method for all logic.
  • Use Node for: Complex processing that benefits from a structured three-phase lifecycle (prep, exec, post).

Retry Strategies

Both Tasks and Nodes support retry strategies. Configure retry behavior using TaskConfig:

// Task with retry configuration
impl Task<WorkflowState> for ReliableTask {
    fn config(&self) -> TaskConfig {
        // Exponential backoff with 5 retries
        TaskConfig::new().with_exponential_retry(5)
    }

    async fn run(&self, store: &MemoryStore) -> Result<WorkflowState, CanoError> {
        // Your task logic here...
        Ok(WorkflowState::Complete)
    }
}

// Node with retry configuration
impl Node<WorkflowState> for ReliableNode {
    fn config(&self) -> TaskConfig {
        // No retries (fail fast)
        TaskConfig::minimal()
    }
    // ... rest of implementation
}

2. Store - Data Sharing

Cano supports flexible data sharing between workflow nodes through stores.

MemoryStore (Key-Value Store)

The built-in MemoryStore provides a flexible key-value interface:

let store = MemoryStore::new();

// Store different types of data
store.put("user_id", 123)?;
store.put("name", "Alice".to_string())?;
store.put("scores", vec![85, 92, 78])?;

// Retrieve data with type safety
let user_id: i32 = store.get("user_id")?;
let name: String = store.get("name")?;

// Append items to existing collections
store.append("scores", 95)?;  // scores is now [85, 92, 78, 95]

// Store operations
let count = store.len()?;
let is_empty = store.is_empty()?;
store.clear()?;

Custom Store Types

For better performance and type safety, use custom struct types:

#[derive(Debug, Clone, Default)]
struct RequestCtx {
    pub request_id: String,
    pub transaction_count: i32,
}

#[async_trait]
impl Node<ProcessingState, RequestCtx> for MetricsNode {
    async fn prep(&self, store: &RequestCtx) -> Result<String, CanoError> {
        // Direct field access - no hash map overhead
        Ok(store.request_id.clone())
    }

    async fn post(&self, store: &RequestCtx, result: ProcessingResult) 
        -> Result<ProcessingState, CanoError> {
        println!("Processing request: {}", store.request_id);
        Ok(ProcessingState::Complete)
    }
}

3. Workflows - State Management

Build workflows with state machine semantics. Workflows can register both Tasks and Nodes using the unified register method:

#[derive(Debug, Clone, PartialEq, Eq, Hash)]
enum WorkflowState {
    Validate,
    Process,
    Complete,
    Error,
}

let mut workflow = Workflow::new(WorkflowState::Validate);
workflow.register(WorkflowState::Validate, validator_task)  // Task
    .register(WorkflowState::Process, processor_node)       // Node  
    .add_exit_states(vec![WorkflowState::Complete, WorkflowState::Error]);

let result = workflow.orchestrate(&store).await?;

Complex Workflows

Build sophisticated state machine pipelines with conditional branching and error handling:

graph TD
    A[Start] --> B[LoadData]
    B --> C{Validate}
    C -->|Valid| D[Process]
    C -->|Invalid| E[Sanitize]  
    C -->|Critical Error| F[Error]
    E --> D
    D --> G{QualityCheck}
    G -->|High Quality| H[Enrich]
    G -->|Low Quality| I[BasicProcess]
    G -->|Failed & Retries Left| J[Retry]
    G -->|Failed & No Retries| K[Failed]
    H --> L[Complete]
    I --> L
    J --> D
    F --> M[Cleanup]
    M --> K
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
enum OrderState {
    Start,
    LoadData,
    Validate,
    Sanitize,
    Process,
    QualityCheck,
    Enrich,
    BasicProcess,
    Retry,
    Cleanup,
    Complete,
    Failed,
    Error,
}

// Validation node with multiple outcomes
struct ValidationNode;

#[async_trait]
impl Node<OrderState> for ValidationNode {
    type PrepResult = String;
    type ExecResult = ValidationResult;

    async fn prep(&self, store: &MemoryStore) -> Result<Self::PrepResult, CanoError> {
        let data: String = store.get("raw_data")?;
        Ok(data)
    }

    async fn exec(&self, data: Self::PrepResult) -> Self::ExecResult {
        if data.contains("critical_error") {
            ValidationResult::CriticalError
        } else if data.len() < 10 {
            ValidationResult::Invalid
        } else {
            ValidationResult::Valid
        }
    }

    async fn post(&self, store: &MemoryStore, result: Self::ExecResult) 
        -> Result<OrderState, CanoError> {
        match result {
            ValidationResult::Valid => Ok(OrderState::Process),
            ValidationResult::Invalid => Ok(OrderState::Sanitize),
            ValidationResult::CriticalError => Ok(OrderState::Error),
        }
    }
}

// Quality check node with retry logic
struct QualityCheckNode;

#[async_trait]
impl Node<OrderState> for QualityCheckNode {
    type PrepResult = (String, i32);
    type ExecResult = QualityScore;

    async fn prep(&self, store: &MemoryStore) -> Result<Self::PrepResult, CanoError> {
        let data: String = store.get("processed_data")?;
        let attempt: i32 = store.get("retry_count").unwrap_or(0);
        Ok((data, attempt))
    }

    async fn exec(&self, (data, attempt): Self::PrepResult) -> Self::ExecResult {
        let score = calculate_quality_score(&data);
        QualityScore { score, attempt }
    }

    async fn post(&self, store: &MemoryStore, result: Self::ExecResult) 
        -> Result<OrderState, CanoError> {
        store.put("quality_score", result.score)?;
        
        match result.score {
            90..=100 => Ok(OrderState::Enrich),
            60..=89 => Ok(OrderState::BasicProcess),
            _ if result.attempt < 3 => {
                store.put("retry_count", result.attempt + 1)?;
                Ok(OrderState::Retry)
            }
            _ => Ok(OrderState::Failed),
        }
    }
}

// OTHER NODES ...

// Build the complete workflow
let mut workflow = Workflow::new(OrderState::Start);
workflow
    .register(OrderState::Start, DataLoaderNode)
    .register(OrderState::Validate, ValidationNode)
    .register(OrderState::Sanitize, SanitizeNode)  
    .register(OrderState::Process, ProcessNode)
    .register(OrderState::QualityCheck, QualityCheckNode)
    .register(OrderState::Enrich, EnrichNode)
    .register(OrderState::BasicProcess, CompleteNode)
    .register(OrderState::Retry, ProcessNode)
    .register(OrderState::Error, CleanupNode)
    .add_exit_states(vec![OrderState::Complete, OrderState::Failed]);

let result = workflow.orchestrate(&store).await?;

Concurrent Workflows

Execute multiple workflow instances in parallel with different timeout strategies:

use cano::prelude::*;

// Create a concurrent workflow with the same API as regular workflows
let mut concurrent_workflow = ConcurrentWorkflow::new(ProcessingState::Start);
concurrent_workflow.register(ProcessingState::Start, processing_node);
concurrent_workflow.add_exit_state(ProcessingState::Complete);

// Execute with different wait strategies
let stores: Vec<MemoryStore> = (0..10).map(|_| MemoryStore::new()).collect();

// Wait for all workflows to complete
let (results, status) = concurrent_workflow
    .execute_concurrent(stores.clone(), WaitStrategy::WaitForever)
    .await?;

// Wait for first 5 to complete, then cancel the rest
let (results, status) = concurrent_workflow
    .execute_concurrent(stores.clone(), WaitStrategy::WaitForQuota(5))
    .await?;

// Execute within time limit
let (results, status) = concurrent_workflow
    .execute_concurrent(stores, WaitStrategy::WaitDuration(Duration::from_secs(30)))
    .await?;

Scheduling Workflows

The Scheduler provides workflow scheduling capabilities for background jobs and automated workflows:

use cano::prelude::*;
use tokio::time::Duration;

#[derive(Debug, Clone, PartialEq, Eq, Hash)]
enum MyState {
    Start,
    Complete,
}

#[derive(Clone)]
struct MyTask;

#[async_trait::async_trait]
impl Node<MyState> for MyTask {
    type PrepResult = ();
    type ExecResult = bool;

    async fn prep(&self, _store: &MemoryStore) -> Result<Self::PrepResult, CanoError> {
        Ok(())
    }

    async fn exec(&self, _prep_res: Self::PrepResult) -> Self::ExecResult {
        println!("Executing task...");
        true
    }

    async fn post(&self, _store: &MemoryStore, exec_res: Self::ExecResult) 
        -> Result<MyState, CanoError> {
        if exec_res {
            Ok(MyState::Complete)
        } else {
            Ok(MyState::Start)
        }
    }
}

#[tokio::main]
async fn main() -> CanoResult<()> {
    let mut scheduler = Scheduler::new();
    
    // Create regular workflows with consistent API
    let mut workflow1 = Workflow::new(MyState::Start);
    workflow1.register(MyState::Start, MyTask);
    workflow1.add_exit_state(MyState::Complete);

    let mut workflow2 = Workflow::new(MyState::Start);
    workflow2.register(MyState::Start, MyTask);
    workflow2.add_exit_state(MyState::Complete);
    
    // Schedule regular workflows
    scheduler.every_seconds("task1", workflow1.clone(), 30)?;          // Every 30 seconds
    scheduler.every_minutes("task2", workflow2.clone(), 5)?;           // Every 5 minutes  
    scheduler.cron("task3", workflow1.clone(), "0 0 9 * * *")?;        // Daily at 9 AM
    scheduler.manual("task4", workflow1)?;                             // Manual trigger only
    
    // Create concurrent workflow with identical API to regular workflows
    let mut concurrent_workflow = ConcurrentWorkflow::new(MyState::Start);
    concurrent_workflow.register(MyState::Start, MyTask);
    concurrent_workflow.add_exit_state(MyState::Complete);
    
    // Schedule concurrent workflows (multiple instances in parallel)
    scheduler.manual_concurrent("concurrent1", concurrent_workflow.clone(), 
        3, WaitStrategy::WaitForever)?;                                // 3 instances, wait for all
    scheduler.every_seconds_concurrent("concurrent2", concurrent_workflow, 
        60, 5, WaitStrategy::WaitForQuota(3))?;                        // 5 instances every minute, wait for 3
    
    // Start the scheduler
    scheduler.start().await?;
    
    // Trigger workflows
    scheduler.trigger("task4").await?;
    
    // Monitor status
    if let Some(status) = scheduler.status("task1").await {
        println!("Task1 status: {:?}", status);
    }
    
    // Graceful shutdown
    scheduler.stop().await?;
    
    Ok(())
}

Features

  • Flexible Scheduling: Intervals, cron expressions, and manual triggers
  • Concurrent Workflows: Execute multiple workflow instances in parallel with configurable wait strategies
  • Status Monitoring: Check workflow status, run counts, and execution times
  • Graceful Shutdown: Stop with timeout for running flows to complete
  • Concurrent Execution: Multiple flows can run simultaneously

Workflow Observability & Tracing

Cano provides comprehensive observability through the optional tracing feature using the tracing library.

Enable Tracing

[dependencies]
cano = { version = "0.6", features = ["tracing"] }
tracing = "0.1"
tracing-subscriber = "0.3"

What Gets Traced

  • Workflow Level: Orchestration start/completion, state transitions, final states
  • Task Level: Task execution with retry logic, attempts, delays, success/failure outcomes
  • Node Level: Three-phase lifecycle (prep, exec, post), retry attempts with detailed context
  • Scheduler Level: Workflow scheduling, concurrent execution, run counts, durations
  • Concurrent Workflows: Individual instance tracking and aggregate statistics

Basic Usage

use cano::prelude::*;
use tracing::{info_span, info};
use tracing_subscriber::{layer::SubscriberExt, util::SubscriberInitExt};

#[tokio::main]
async fn main() -> Result<(), CanoError> {
    // Set up tracing subscriber
    tracing_subscriber::registry()
        .with(tracing_subscriber::EnvFilter::from_default_env())
        .with(tracing_subscriber::fmt::layer())
        .init();

    // Create workflow with custom tracing span
    let workflow_span = info_span!(
        "user_data_processing", 
        user_id = "12345", 
        batch_id = "batch_001"
    );
    
    let mut workflow = Workflow::new(MyState::Start)
        .with_tracing_span(workflow_span);
    
    workflow.register(MyState::Start, MyProcessingNode);
    
    // All execution will be traced under your custom span
    let result = workflow.orchestrate(&store).await?;
    
    Ok(())
}

Advanced Tracing

// Custom spans for concurrent workflows
let concurrent_span = info_span!("batch_processing", batch_size = 5);
let mut concurrent_workflow = ConcurrentWorkflow::new(MyState::Start)
    .with_tracing_span(concurrent_span);

// Custom tracing in nodes
#[async_trait]
impl Node<MyState> for TracedNode {
    async fn prep(&self, store: &MemoryStore) -> Result<String, CanoError> {
        info!(node_id = %self.id, "Starting data preparation");
        // Your prep logic - automatically traced
        Ok("prepared".to_string())
    }
    
    async fn exec(&self, prep_result: String) -> bool {
        info!("Processing data: {}", prep_result);
        true
    }
    
    async fn post(&self, store: &MemoryStore, success: bool) -> Result<MyState, CanoError> {
        info!(success, "Node execution completed");
        Ok(MyState::Complete)
    }
}

Tracing Output

With RUST_LOG=info cargo run, you'll see structured output like:

INFO user_data_processing{user_id="12345" batch_id="batch_001"}: Starting workflow orchestration
  INFO user_data_processing{user_id="12345" batch_id="batch_001"}:task_execution{state=Start}:run_with_retries{max_attempts=4}: Starting task execution with retry logic
    INFO user_data_processing{user_id="12345" batch_id="batch_001"}:task_execution{state=Start}:run_with_retries{max_attempts=4}:task_attempt{attempt=1}: Starting data preparation node_id=processor_1
    INFO user_data_processing{user_id="12345" batch_id="batch_001"}:task_execution{state=Start}:run_with_retries{max_attempts=4}:task_attempt{attempt=1}: Node execution completed success=true
  INFO user_data_processing{user_id="12345" batch_id="batch_001"}:task_execution{state=Start}:run_with_retries{max_attempts=4}: Task execution successful attempt=1
INFO user_data_processing{user_id="12345" batch_id="batch_001"}: Workflow completed successfully final_state=Complete

Performance

  • Zero-cost when disabled: No overhead when tracing feature is not enabled
  • Minimal impact when enabled: Structured logging with efficient processing
  • Conditional compilation: Tracing code only compiled when feature is enabled

Run the tracing demo:

RUST_LOG=info cargo run --example tracing_demo --features tracing,scheduler

Examples and Testing

Run Examples

# Examples directory contains various workflow implementations
cargo run --example [example_name]

Run Tests and Benchmarks

# Run all tests
cargo test

# Run benchmarks from the benches directory
cargo bench --bench [benchmark_name]

Benchmark results are saved in target/criterion/.

Documentation

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

License

This project is licensed under the MIT License - see the LICENSE file for details.