1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
/*!
NAdam optimiser: Adam with Nesterov momentum

Described in [Incorporating Nesterov Momentum into Adam](https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ)

Pseudocode (including decoupling of weight decay):

$$
\\begin{aligned}
    &\\rule{110mm}{0.4pt}                                                                 \\\\
    &\\textbf{input}      : \\gamma_t \\text{ (lr)}, \\: \\beta_1,\\beta_2 \\text{ (betas)},
        \\: \\theta_0 \\text{ (params)}, \\: f(\\theta) \\text{ (objective)}                   \\\\
    &\\hspace{12mm} \\: \\lambda \\text{ (weight decay)}, \\:\\psi \\text{ (momentum decay)}    \\\\
    &\\textbf{initialize} :  m_0 \\leftarrow 0 \\text{ ( first moment)},
        v_0 \\leftarrow 0 \\text{ ( second moment)}                                 \\\\[-1.ex]
    &\\rule{110mm}{0.4pt}                                                                 \\\\
    &\\textbf{for} \\: t=1 \\: \\textbf{to} \\: \\ldots \\: \\textbf{do}                         \\\\
    &\\hspace{5mm}g_t           \\leftarrow   \\nabla_{\\theta} f_t (\\theta_{t-1})           \\\\
    &\\hspace{5mm} \\theta_t \\leftarrow \\theta_{t-1}                                       \\\\
    &\\hspace{5mm}\\textbf{if} \\: \\lambda \\textbf{ is } \\text{Some}                        \\\\
    &\\hspace{10mm}\\textbf{if} \\: \\textit{decoupled}                       \\\\
    &\\hspace{15mm} \\theta_t \\leftarrow \\theta_{t-1} - \\gamma \\lambda \\theta_{t-1}                    \\\\
    &\\hspace{10mm}\\textbf{else}                                                              \\\\
    &\\hspace{15mm} g_t \\leftarrow g_t + \\lambda  \\theta_{t-1}                            \\\\
    &\\hspace{5mm} \\mu_t \\leftarrow \\beta_1 \\big(1 - \\frac{1}{2}  0.96^{t \\psi} \\big)     \\\\
    &\\hspace{5mm} \\mu_{t+1} \\leftarrow \\beta_1 \\big(1 - \\frac{1}{2} 0.96^{(t+1)\\psi}\\big)\\\\
    &\\hspace{5mm}m_t           \\leftarrow   \\beta_1 m_{t-1} + (1 - \\beta_1) g_t          \\\\
    &\\hspace{5mm}v_t           \\leftarrow   \\beta_2 v_{t-1} + (1-\\beta_2) g^2_t          \\\\
    &\\hspace{5mm}\\widehat{m_t} \\leftarrow \\mu_{t+1} m_t/(1-\\prod_{i=1}^{t+1}\\mu_i)\\\\[-1.ex]
    & \\hspace{11mm} + (1-\\mu_t) g_t /(1-\\prod_{i=1}^{t} \\mu_{i})                         \\\\
    &\\hspace{5mm}\\widehat{v_t} \\leftarrow   v_t/\\big(1-\\beta_2^t \\big)                   \\\\
    &\\hspace{5mm}\\theta_t \\leftarrow \\theta_t - \\gamma \\widehat{m_t}/
        \\big(\\sqrt{\\widehat{v_t}} + \\epsilon \\big)                                       \\\\
    &\\rule{110mm}{0.4pt}                                                          \\\\[-1.ex]
    &\\bf{return} \\:  \\theta_t                                                     \\\\[-1.ex]
    &\\rule{110mm}{0.4pt}                                                          \\\\[-1.ex]
\\end{aligned}
$$
*/

use candle_core::{Result, Var};
use candle_nn::optim::Optimizer;

use crate::{Decay, OptimParams};

/// Adam optimiser with Nesterov momentum
///
/// Described in <https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ>
#[derive(Debug)]
pub struct NAdam {
    vars: Vec<VarNAdam>,
    params: ParamsNAdam,
    mu_t: f64,
    mu_t2: f64,
    prod: f64,
    prod2: f64,
    t: f64,
}

#[derive(Debug)]
struct VarNAdam {
    theta: Var,
    m: Var,
    v: Var,
}

/// Parameters for The NAdam optimiser
#[derive(Clone, Debug, PartialEq, PartialOrd)]
pub struct ParamsNAdam {
    /// Learning rate
    pub lr: f64,
    /// Coefficient for moving average of first moment
    pub beta_1: f64,
    /// Coefficient for moving average of second moment
    pub beta_2: f64,
    /// Term added to denominator to improve numerical stability
    pub eps: f64,
    /// Weight decay
    pub weight_decay: Option<Decay>,
    /// Momentum decay
    pub momentum_decay: f64,
}

impl Default for ParamsNAdam {
    fn default() -> Self {
        Self {
            lr: 0.002,
            beta_1: 0.9,
            beta_2: 0.999,
            eps: 1e-8,
            weight_decay: None,
            momentum_decay: 0.004,
        }
    }
}

impl Optimizer for NAdam {
    type Config = ParamsNAdam;

    fn new(vars: Vec<Var>, params: ParamsNAdam) -> Result<Self> {
        let vars = vars
            .into_iter()
            .filter(|var| var.dtype().is_float())
            .map(|var| {
                let dtype = var.dtype();
                let shape = var.shape();
                let device = var.device();
                let m = Var::zeros(shape, dtype, device)?;
                let v = Var::zeros(shape, dtype, device)?;
                Ok(VarNAdam { theta: var, m, v })
            })
            .collect::<Result<Vec<VarNAdam>>>()?;
        // // Err(SGDError::NoMomentum)?;
        // let mut params = params;
        // params.t = 0;
        let t = 1.;
        let mu_t2 = params.beta_1 * 0.5f64.mul_add(-(0.96_f64.powf(t * params.momentum_decay)), 1.);
        Ok(Self {
            vars,
            params,
            t: 1.,
            mu_t: 1.,
            mu_t2,
            prod: 1.,
            prod2: mu_t2,
        })
    }

    fn learning_rate(&self) -> f64 {
        self.params.lr
    }

    fn step(&mut self, grads: &candle_core::backprop::GradStore) -> Result<()> {
        let mu_t = self.mu_t2;
        let mu_t2 = self.params.beta_1
            * 0.5f64.mul_add(
                -(0.96_f64.powf((self.t + 1.) * self.params.momentum_decay)),
                1.,
            );
        let prod = self.prod2;
        let prod2 = prod * mu_t2;
        self.mu_t = mu_t;
        self.mu_t2 = mu_t2;
        self.prod = prod;
        self.prod2 = prod2;
        // println!("prod {}", prod);

        if let Some(decay) = self.params.weight_decay {
            match decay {
                Decay::WeightDecay(decay) => {
                    for var in &self.vars {
                        let theta = &var.theta;
                        let m = &var.m;
                        let v = &var.v;
                        if let Some(grad) = grads.get(theta) {
                            let grad = &(grad + (decay * theta.as_tensor())?)?;
                            let m_next = ((self.params.beta_1 * m.as_tensor())?
                                + ((1. - self.params.beta_1) * grad)?)?;
                            let v_next = ((self.params.beta_2 * v.as_tensor())?
                                + ((1. - self.params.beta_2) * grad.powf(2.)?)?)?;
                            let m_hat = (((mu_t2 / (1. - prod2)) * &m_next)?
                                + (((1. - mu_t) / (1. - prod)) * grad)?)?;
                            let v_hat = (&v_next / (1. - self.params.beta_2.powf(self.t)))?;
                            let delta = (m_hat * self.params.lr)?
                                .div(&(v_hat.powf(0.5)? + self.params.eps)?)?;
                            theta.set(&theta.sub(&(delta))?)?;
                            m.set(&m_next)?;
                            v.set(&v_next)?;
                        }
                    }
                }
                Decay::DecoupledWeightDecay(decay) => {
                    for var in &self.vars {
                        let theta = &var.theta;
                        let m = &var.m;
                        let v = &var.v;
                        if let Some(grad) = grads.get(theta) {
                            theta
                                .set(&(theta.as_tensor() * self.params.lr.mul_add(-decay, 1.))?)?;
                            let m_next = ((self.params.beta_1 * m.as_tensor())?
                                + ((1. - self.params.beta_1) * grad)?)?;
                            let v_next = ((self.params.beta_2 * v.as_tensor())?
                                + ((1. - self.params.beta_2) * grad.powf(2.)?)?)?;
                            let m_hat = (((mu_t2 / (1. - prod2)) * &m_next)?
                                + (((1. - mu_t) / (1. - prod)) * grad)?)?;
                            let v_hat = (&v_next / (1. - self.params.beta_2.powf(self.t)))?;
                            let delta = (m_hat * self.params.lr)?
                                .div(&(v_hat.powf(0.5)? + self.params.eps)?)?;
                            theta.set(&theta.sub(&(delta))?)?;
                            m.set(&m_next)?;
                            v.set(&v_next)?;
                        }
                    }
                }
            }
        } else {
            for var in &self.vars {
                let theta = &var.theta;
                let m = &var.m;
                let v = &var.v;
                if let Some(grad) = grads.get(theta) {
                    let m_next = ((self.params.beta_1 * m.as_tensor())?
                        + ((1. - self.params.beta_1) * grad)?)?;
                    let v_next = ((self.params.beta_2 * v.as_tensor())?
                        + ((1. - self.params.beta_2) * grad.powf(2.)?)?)?;
                    let m_hat = (((mu_t2 / (1. - prod2)) * &m_next)?
                        + (((1. - mu_t) / (1. - prod)) * grad)?)?;
                    let v_hat = (&v_next / (1. - self.params.beta_2.powf(self.t)))?;
                    let delta =
                        (m_hat * self.params.lr)?.div(&(v_hat.powf(0.5)? + self.params.eps)?)?;
                    theta.set(&theta.sub(&(delta))?)?;
                    m.set(&m_next)?;
                    v.set(&v_next)?;
                }
            }
        }

        self.t += 1.;
        Ok(())
    }

    fn set_learning_rate(&mut self, lr: f64) {
        self.params.lr = lr;
    }
}

impl OptimParams for NAdam {
    fn params(&self) -> &Self::Config {
        &self.params
    }

    fn set_params(&mut self, config: Self::Config) {
        self.params = config;
    }
}

impl NAdam {
    /// Return the vars being optimised
    #[must_use]
    pub fn into_inner(self) -> Vec<Var> {
        self.vars.into_iter().map(|v| v.theta).collect()
    }

    // pub fn push(&mut self, var: &Var) {
    //     self.vars.push(var.clone());
    // }
}

#[cfg(test)]
mod tests {
    // use candle_core::test_utils::{to_vec0_round, to_vec2_round};

    use anyhow::Result;
    use assert_approx_eq::assert_approx_eq;
    use candle_core::{Device, Var};
    use candle_nn::Optimizer;

    use super::*;
    #[test]
    fn lr_test() -> Result<()> {
        let params = ParamsNAdam {
            lr: 0.004,
            ..Default::default()
        };
        // Now use backprop to run a linear regression between samples and get the coefficients back.
        let w = Var::new(&[[0f32, 0.]], &Device::Cpu)?;
        let b = Var::new(0f32, &Device::Cpu)?;
        let mut optim = NAdam::new(vec![w.clone(), b.clone()], params)?;
        assert_approx_eq!(0.004, optim.learning_rate());
        optim.set_learning_rate(0.002);
        assert_approx_eq!(0.002, optim.learning_rate());
        Ok(())
    }

    #[test]
    fn into_inner_test() -> Result<()> {
        let params = ParamsNAdam::default();
        let w = Var::new(&[[3f32, 1.]], &Device::Cpu)?;
        let b = Var::new(-2f32, &Device::Cpu)?;
        let optim = NAdam::new(vec![w.clone(), b.clone()], params)?;
        let inner = optim.into_inner();
        assert_eq!(inner[0].as_tensor().to_vec2::<f32>()?, &[[3f32, 1.]]);
        assert_approx_eq!(inner[1].as_tensor().to_vec0::<f32>()?, -2_f32);
        Ok(())
    }

    #[test]
    fn params_test() -> Result<()> {
        let params = ParamsNAdam {
            lr: 0.004,
            ..Default::default()
        };
        // Now use backprop to run a linear regression between samples and get the coefficients back.
        let w = Var::new(&[[0f32, 0.]], &Device::Cpu)?;
        let b = Var::new(0f32, &Device::Cpu)?;
        let mut optim = NAdam::new(vec![w.clone(), b.clone()], params.clone())?;
        assert_eq!(params, optim.params().clone());
        let new_params = ParamsNAdam {
            lr: 0.002,
            ..Default::default()
        };
        optim.set_params(new_params.clone());
        assert_eq!(new_params, optim.params().clone());
        Ok(())
    }
}