1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
/*!
Adamax optimiser
An Adam optimiser based on infinity norm, described in [Adam: A Method for Stochastic Optimization](https://arxiv.org/abs/1412.6980)
Pseudocode (including decoupling of weight decay):
$$
\\begin{aligned}
&\\rule{110mm}{0.4pt} \\\\
&\\textbf{input} : \\gamma \\text{ (lr)}, \\beta_1, \\beta_2
\\text{ (betas)},\\theta_0 \\text{ (params)},f(\\theta) \\text{ (objective)},
\\: \\lambda \\text{ (weight decay)}, \\\\
&\\hspace{13mm} \\epsilon \\text{ (epsilon)} \\\\
&\\textbf{initialize} : m_0 \\leftarrow 0 \\text{ ( first moment)},
u_0 \\leftarrow 0 \\text{ ( infinity norm)} \\\\[-1.ex]
&\\rule{110mm}{0.4pt} \\\\
&\\textbf{for} \\: t=1 \\: \\textbf{to} \\: \\ldots \\: \\textbf{do} \\\\
&\\hspace{5mm}g_t \\leftarrow \\nabla_{\\theta} f_t (\\theta_{t-1}) \\\\
&\\hspace{5mm}\\textbf{if} \\: \\lambda \\textbf{ is } \\text{Some} \\\\
&\\hspace{10mm}\\textbf{if} \\: \\textit{decoupled} \\\\
&\\hspace{15mm} \\theta_t \\leftarrow \\theta_{t-1} - \\gamma \\lambda \\theta_{t-1} \\\\
&\\hspace{10mm}\\textbf{else} \\\\
&\\hspace{15mm} g_t \\leftarrow g_t + \\lambda \\theta_{t-1} \\\\
&\\hspace{5mm}m_t \\leftarrow \\beta_1 m_{t-1} + (1 - \\beta_1) g_t \\\\
&\\hspace{5mm}u_t \\leftarrow \\mathrm{max}(\\beta_2 u_{t-1}, |g_{t}|+\\epsilon) \\\\
&\\hspace{5mm}\\theta_t \\leftarrow \\theta_{t-1} - \\frac{\\gamma m_t}{(1-\\beta^t_1) u_t} \\\\
&\\rule{110mm}{0.4pt} \\\\[-1.ex]
&\\bf{return} \\: \\theta_t \\\\[-1.ex]
&\\rule{110mm}{0.4pt} \\\\[-1.ex]
\\end{aligned}
$$
*/
use candle_core::{Result, Var};
use candle_nn::optim::Optimizer;
use crate::{Decay, OptimParams};
/// Adamax optimiser
///
/// An Adam optimiser based on infinity norm, described in [Adam: A Method for Stochastic Optimization](https://arxiv.org/abs/1412.6980)
#[derive(Debug)]
pub struct Adamax {
vars: Vec<VarAdaMax>,
params: ParamsAdaMax,
t: f64,
}
#[derive(Debug)]
struct VarAdaMax {
theta: Var,
m: Var,
u: Var,
}
/// Parameters for the Adamax optimiser
#[derive(Clone, Debug, PartialEq, PartialOrd)]
pub struct ParamsAdaMax {
/// Learning rate
pub lr: f64,
/// Coefficient for moving average of first moment
pub beta_1: f64,
/// Coefficient for moving average of second moment
pub beta_2: f64,
/// Weight decay
pub weight_decay: Option<Decay>,
/// Term added to denominator to improve numerical stability
pub eps: f64,
}
impl Default for ParamsAdaMax {
fn default() -> Self {
Self {
lr: 1.0,
beta_1: 0.9,
beta_2: 0.999,
weight_decay: None,
eps: 1e-8,
}
}
}
impl Optimizer for Adamax {
type Config = ParamsAdaMax;
fn new(vars: Vec<Var>, params: ParamsAdaMax) -> Result<Self> {
let vars = vars
.into_iter()
.filter(|var| var.dtype().is_float())
.map(|var| {
let dtype = var.dtype();
let shape = var.shape();
let device = var.device();
let m = Var::zeros(shape, dtype, device)?;
let u = Var::zeros(shape, dtype, device)?;
Ok(VarAdaMax { theta: var, m, u })
})
.collect::<Result<Vec<VarAdaMax>>>()?;
// // Err(SGDError::NoMomentum)?;
// let mut params = params;
// params.t = 0;
Ok(Self {
vars,
params,
t: 1.,
})
}
fn learning_rate(&self) -> f64 {
self.params.lr
}
fn step(&mut self, grads: &candle_core::backprop::GradStore) -> Result<()> {
if let Some(decay) = self.params.weight_decay {
match decay {
Decay::WeightDecay(decay) => {
for var in &self.vars {
let theta = &var.theta;
let m = &var.m;
let u = &var.u;
if let Some(grad) = grads.get(theta) {
let grad = &(grad + (decay * theta.as_tensor())?)?;
let m_next = ((self.params.beta_1 * m.as_tensor())?
+ (1. - self.params.beta_1) * grad)?;
let u_next = (self.params.beta_2 * u.as_tensor())?
.maximum(&(grad.abs()? + self.params.eps)?)?;
let delta = (&m_next * self.params.lr)?
.div(&(&u_next * (1. - self.params.beta_1.powf(self.t)))?)?;
theta.set(&theta.sub(&(delta))?)?;
m.set(&m_next)?;
u.set(&u_next)?;
}
}
}
Decay::DecoupledWeightDecay(decay) => {
for var in &self.vars {
let theta = &var.theta;
let m = &var.m;
let u = &var.u;
if let Some(grad) = grads.get(theta) {
// decoupled weight decay step
theta
.set(&(theta.as_tensor() * self.params.lr.mul_add(-decay, 1.))?)?;
let m_next = ((self.params.beta_1 * m.as_tensor())?
+ (1. - self.params.beta_1) * grad)?;
let u_next = (self.params.beta_2 * u.as_tensor())?
.maximum(&(grad.abs()? + self.params.eps)?)?;
let delta = (&m_next * self.params.lr)?
.div(&(&u_next * (1. - self.params.beta_1.powf(self.t)))?)?;
theta.set(&theta.sub(&(delta))?)?;
m.set(&m_next)?;
u.set(&u_next)?;
}
}
}
}
} else {
for var in &self.vars {
let theta = &var.theta;
let m = &var.m;
let u = &var.u;
if let Some(grad) = grads.get(theta) {
let m_next =
((self.params.beta_1 * m.as_tensor())? + (1. - self.params.beta_1) * grad)?;
let u_next = (self.params.beta_2 * u.as_tensor())?
.maximum(&(grad.abs()? + self.params.eps)?)?;
let delta = (&m_next * self.params.lr)?
.div(&(&u_next * (1. - self.params.beta_1.powf(self.t)))?)?;
theta.set(&theta.sub(&(delta))?)?;
m.set(&m_next)?;
u.set(&u_next)?;
}
}
}
self.t += 1.;
Ok(())
}
fn set_learning_rate(&mut self, lr: f64) {
self.params.lr = lr;
}
}
impl OptimParams for Adamax {
fn params(&self) -> &Self::Config {
&self.params
}
fn set_params(&mut self, config: Self::Config) {
self.params = config;
}
}
impl Adamax {
/// Return the vars being optimised
#[must_use]
pub fn into_inner(self) -> Vec<Var> {
self.vars.into_iter().map(|v| v.theta).collect()
}
// pub fn push(&mut self, var: &Var) {
// self.vars.push(var.clone());
// }
}
#[cfg(test)]
mod tests {
// use candle_core::test_utils::{to_vec0_round, to_vec2_round};
use anyhow::Result;
use assert_approx_eq::assert_approx_eq;
use candle_core::{Device, Var};
use candle_nn::Optimizer;
use super::*;
#[test]
fn lr_test() -> Result<()> {
let params = ParamsAdaMax {
lr: 0.004,
..Default::default()
};
// Now use backprop to run a linear regression between samples and get the coefficients back.
let w = Var::new(&[[0f32, 0.]], &Device::Cpu)?;
let b = Var::new(0f32, &Device::Cpu)?;
let mut optim = Adamax::new(vec![w.clone(), b.clone()], params)?;
assert_approx_eq!(0.004, optim.learning_rate());
optim.set_learning_rate(0.002);
assert_approx_eq!(0.002, optim.learning_rate());
Ok(())
}
#[test]
fn into_inner_test() -> Result<()> {
let params = ParamsAdaMax::default();
let w = Var::new(&[[3f32, 1.]], &Device::Cpu)?;
let b = Var::new(-2f32, &Device::Cpu)?;
let optim = Adamax::new(vec![w.clone(), b.clone()], params)?;
let inner = optim.into_inner();
assert_eq!(inner[0].as_tensor().to_vec2::<f32>()?, &[[3f32, 1.]]);
assert_approx_eq!(inner[1].as_tensor().to_vec0::<f32>()?, -2_f32);
Ok(())
}
#[test]
fn params_test() -> Result<()> {
let params = ParamsAdaMax {
lr: 0.004,
..Default::default()
};
// Now use backprop to run a linear regression between samples and get the coefficients back.
let w = Var::new(&[[0f32, 0.]], &Device::Cpu)?;
let b = Var::new(0f32, &Device::Cpu)?;
let mut optim = Adamax::new(vec![w.clone(), b.clone()], params.clone())?;
assert_eq!(params, optim.params().clone());
let new_params = ParamsAdaMax {
lr: 0.002,
..Default::default()
};
optim.set_params(new_params.clone());
assert_eq!(new_params, optim.params().clone());
Ok(())
}
}