1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
/*!
Adagrad optimiser
Described in [Adaptive Subgradient Methods for Online Learning and Stochastic Optimization](https://jmlr.org/papers/v12/duchi11a.html)
Pseudocode (including decoupling of weight decay):
$$
\\begin{aligned}
&\\rule{110mm}{0.4pt} \\\\
&\\textbf{input} : \\gamma \\text{ (lr)}, \\: \\theta_0 \\text{ (params)}, \\: f(\\theta)
\\text{ (objective)}, \\: \\lambda \\text{ (weight decay)}, \\\\
&\\hspace{12mm} \\tau \\text{ (initial accumulator value)}, \\: \\eta\\text{ (lr decay)}\\\\
&\\textbf{initialize} : statesum_0 \\leftarrow 0 \\\\[-1.ex]
&\\rule{110mm}{0.4pt} \\\\
&\\textbf{for} \\: t=1 \\: \\textbf{to} \\: \\ldots \\: \\textbf{do} \\\\
&\\hspace{5mm}g_t \\leftarrow \\nabla_{\\theta} f_t (\\theta_{t-1}) \\\\
&\\hspace{5mm} \\tilde{\\gamma} \\leftarrow \\gamma / (1 +(t-1) \\eta) \\\\
&\\hspace{5mm}\\textbf{if} \\: \\lambda \\textbf{ is } \\text{Some} \\\\
&\\hspace{10mm}\\textbf{if} \\: \\textit{decoupled} \\\\
&\\hspace{15mm} \\theta_t \\leftarrow \\theta_{t-1} - \\gamma \\lambda \\theta_{t-1} \\\\
&\\hspace{10mm}\\textbf{else} \\\\
&\\hspace{15mm} g_t \\leftarrow g_t + \\lambda \\theta_{t-1} \\\\
&\\hspace{5mm}statesum_t \\leftarrow statesum_{t-1} + g^2_t \\\\
&\\hspace{5mm}\\theta_t \\leftarrow
\\theta_{t-1}- \\tilde{\\gamma} \\frac{g_t}{\\sqrt{statesum_t}+\\epsilon} \\\\
&\\rule{110mm}{0.4pt} \\\\[-1.ex]
&\\bf{return} \\: \\theta_t \\\\[-1.ex]
&\\rule{110mm}{0.4pt} \\\\[-1.ex]
\\end{aligned}
$$
*/
use candle_core::{Result, Var};
use candle_nn::optim::Optimizer;
use crate::{Decay, OptimParams};
/// Adagrad optimiser
///
/// Described in [Adaptive Subgradient Methods for Online Learning and Stochastic Optimization](https://jmlr.org/papers/v12/duchi11a.html)
#[derive(Debug)]
pub struct Adagrad {
vars: Vec<VarAdaGrad>,
params: ParamsAdaGrad,
t: f64,
}
#[derive(Debug)]
struct VarAdaGrad {
theta: Var,
sum: Var,
}
/// Parameters for the Adagrad optimiser
#[derive(Clone, Debug, PartialEq, PartialOrd)]
pub struct ParamsAdaGrad {
/// Learning rate
pub lr: f64,
/// Learning rate decay
pub lr_decay: f64,
/// Initial value of accumulator
pub initial_acc: f64,
/// weight decay
pub weight_decay: Option<Decay>,
/// term added to the denominator to improve numerical stability
pub eps: f64,
}
impl Default for ParamsAdaGrad {
fn default() -> Self {
Self {
lr: 0.01,
lr_decay: 0.0,
initial_acc: 0.0,
weight_decay: None,
eps: 1e-10,
}
}
}
impl Optimizer for Adagrad {
type Config = ParamsAdaGrad;
fn new(vars: Vec<Var>, params: ParamsAdaGrad) -> Result<Self> {
let vars = vars
.into_iter()
.filter(|var| var.dtype().is_float())
.map(|var| {
let dtype = var.dtype();
let shape = var.shape();
let device = var.device();
let sum = Var::zeros(shape, dtype, device)?;
Ok(VarAdaGrad { theta: var, sum })
})
.collect::<Result<Vec<VarAdaGrad>>>()?;
// // Err(SGDError::NoMomentum)?;
// let mut params = params;
// params.t = 0;
Ok(Self {
vars,
t: 0.,
params,
})
}
fn learning_rate(&self) -> f64 {
self.params.lr
}
fn step(&mut self, grads: &candle_core::backprop::GradStore) -> Result<()> {
if let Some(decay) = self.params.weight_decay {
match decay {
Decay::WeightDecay(decay) => {
for var in &self.vars {
let theta = &var.theta;
let sum = &var.sum;
if let Some(grad) = grads.get(theta) {
let gamma_tilde =
self.params.lr / self.t.mul_add(self.params.lr_decay, 1.);
let grad = &(grad + (decay * theta.as_tensor())?)?;
let current_sum = (sum.as_tensor() + grad.powf(2.)?)?;
let change = (gamma_tilde
* (grad.div(&(current_sum.powf(0.5)? + self.params.eps)?))?)?;
sum.set(¤t_sum)?;
theta.set(&theta.sub(&change)?)?;
}
}
}
Decay::DecoupledWeightDecay(decay) => {
for var in &self.vars {
let theta = &var.theta;
let sum = &var.sum;
if let Some(grad) = grads.get(theta) {
// decoupled weight decay step
theta
.set(&(theta.as_tensor() * self.params.lr.mul_add(-decay, 1.))?)?;
let gamma_tilde =
self.params.lr / self.t.mul_add(self.params.lr_decay, 1.);
let current_sum = (sum.as_tensor() + grad.powf(2.)?)?;
let change = (gamma_tilde
* (grad.div(&(current_sum.powf(0.5)? + self.params.eps)?))?)?;
sum.set(¤t_sum)?;
theta.set(&theta.sub(&change)?)?;
}
}
}
}
} else {
for var in &self.vars {
let theta = &var.theta;
let sum = &var.sum;
if let Some(grad) = grads.get(theta) {
let gamma_tilde = self.params.lr / self.t.mul_add(self.params.lr_decay, 1.);
let current_sum = (sum.as_tensor() + grad.powf(2.)?)?;
let change =
(gamma_tilde * (grad.div(&(current_sum.powf(0.5)? + self.params.eps)?))?)?;
sum.set(¤t_sum)?;
theta.set(&theta.sub(&change)?)?;
}
}
}
self.t += 1.;
Ok(())
}
fn set_learning_rate(&mut self, lr: f64) {
self.params.lr = lr;
}
}
impl OptimParams for Adagrad {
fn params(&self) -> &Self::Config {
&self.params
}
fn set_params(&mut self, config: Self::Config) {
self.params = config;
}
}
impl Adagrad {
/// Return the vars being optimised
#[must_use]
pub fn into_inner(self) -> Vec<Var> {
self.vars.into_iter().map(|v| v.theta).collect()
}
// pub fn push(&mut self, var: &Var) {
// self.vars.push(var.clone());
// }
}
#[cfg(test)]
mod tests {
// use candle_core::test_utils::{to_vec0_round, to_vec2_round};
use anyhow::Result;
use assert_approx_eq::assert_approx_eq;
use candle_core::{Device, Var};
use candle_nn::Optimizer;
use super::*;
#[test]
fn lr_test() -> Result<()> {
let params = ParamsAdaGrad {
lr: 0.004,
..Default::default()
};
// Now use backprop to run a linear regression between samples and get the coefficients back.
let w = Var::new(&[[0f32, 0.]], &Device::Cpu)?;
let b = Var::new(0f32, &Device::Cpu)?;
let mut optim = Adagrad::new(vec![w.clone(), b.clone()], params)?;
assert_approx_eq!(0.004, optim.learning_rate());
optim.set_learning_rate(0.002);
assert_approx_eq!(0.002, optim.learning_rate());
Ok(())
}
#[test]
fn into_inner_test() -> Result<()> {
let params = ParamsAdaGrad::default();
let w = Var::new(&[[3f32, 1.]], &Device::Cpu)?;
let b = Var::new(-2f32, &Device::Cpu)?;
let optim = Adagrad::new(vec![w.clone(), b.clone()], params)?;
let inner = optim.into_inner();
assert_eq!(inner[0].as_tensor().to_vec2::<f32>()?, &[[3f32, 1.]]);
assert_approx_eq!(inner[1].as_tensor().to_vec0::<f32>()?, -2_f32);
Ok(())
}
#[test]
fn params_test() -> Result<()> {
let params = ParamsAdaGrad {
lr: 0.004,
..Default::default()
};
// Now use backprop to run a linear regression between samples and get the coefficients back.
let w = Var::new(&[[0f32, 0.]], &Device::Cpu)?;
let b = Var::new(0f32, &Device::Cpu)?;
let mut optim = Adagrad::new(vec![w.clone(), b.clone()], params.clone())?;
assert_eq!(params, optim.params().clone());
let new_params = ParamsAdaGrad {
lr: 0.002,
..Default::default()
};
optim.set_params(new_params.clone());
assert_eq!(new_params, optim.params().clone());
Ok(())
}
}