1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
/*!
RAdam optimiser
Described in [On the Variance of the Adaptive Learning Rate and Beyond](https://arxiv.org/abs/1908.03265)
As decoupled weight decay is implemented, this can be used equivalent to the paper (which uses decoupled weight decay),
or the PyTorch implementation (which does not)
Pseudocode (including decoupling of weight decay):
$$
\\begin{aligned}
&\\rule{110mm}{0.4pt} \\\\
&\\textbf{input} : \\gamma \\text{ (lr)}, \\: \\beta_1, \\beta_2
\\text{ (betas)}, \\: \\theta_0 \\text{ (params)}, \\:f(\\theta) \\text{ (objective)}, \\:
\\lambda \\text{ (weightdecay)}, \\\\
&\\hspace{13mm} \\epsilon \\text{ (epsilon)} \\\\
&\\textbf{initialize} : m_0 \\leftarrow 0 \\text{ ( first moment)},
v_0 \\leftarrow 0 \\text{ ( second moment)}, \\\\
&\\hspace{18mm} \\rho_{\\infty} \\leftarrow 2/(1-\\beta_2) -1 \\\\[-1.ex]
&\\rule{110mm}{0.4pt} \\\\
&\\textbf{for} \\: t=1 \\: \\textbf{to} \\: \\ldots \\: \\textbf{do} \\\\
&\\hspace{5mm}g_t \\leftarrow \\nabla_{\\theta} f_t (\\theta_{t-1}) \\\\
&\\hspace{5mm}\\textbf{if} \\: \\lambda \\textbf{ is } \\text{Some} \\\\
&\\hspace{10mm}\\textbf{if} \\: \\textit{decoupled} \\\\
&\\hspace{15mm} \\theta_t \\leftarrow \\theta_{t-1} - \\gamma \\lambda \\theta_{t-1} \\\\
&\\hspace{10mm}\\textbf{else} \\\\
&\\hspace{15mm} g_t \\leftarrow g_t + \\lambda \\theta_{t-1} \\\\
&\\hspace{5mm}m_t \\leftarrow \\beta_1 m_{t-1} + (1 - \\beta_1) g_t \\\\
&\\hspace{5mm}v_t \\leftarrow \\beta_2 v_{t-1} + (1-\\beta_2) g^2_t \\\\
&\\hspace{5mm}\\widehat{m_t} \\leftarrow m_t/\\big(1-\\beta_1^t \\big) \\\\
&\\hspace{5mm}\\rho_t \\leftarrow \\rho_{\\infty} -
2 t \\beta^t_2 /\\big(1-\\beta_2^t \\big) \\\\[0.1.ex]
&\\hspace{5mm}\\textbf{if} \\: \\rho_t > 5 \\\\
&\\hspace{10mm} l_t \\leftarrow \\frac{\\sqrt{ (1-\\beta^t_2) }}{ \\sqrt{v_t} +\\epsilon } \\\\
&\\hspace{10mm} r_t \\leftarrow
\\sqrt{\\frac{(\\rho_t-4)(\\rho_t-2)\\rho_{\\infty}}{(\\rho_{\\infty}-4)(\\rho_{\\infty}-2) \\rho_t}} \\\\
&\\hspace{10mm}\\theta_t \\leftarrow \\theta_{t-1} - \\gamma \\widehat{m_t} r_t l_t \\\\
&\\hspace{5mm}\\textbf{else} \\\\
&\\hspace{10mm}\\theta_t \\leftarrow \\theta_{t-1} - \\gamma \\widehat{m_t} \\\\
&\\rule{110mm}{0.4pt} \\\\[-1.ex]
&\\bf{return} \\: \\theta_t \\\\[-1.ex]
&\\rule{110mm}{0.4pt} \\\\[-1.ex]
\\end{aligned}
$$
*/
use candle_core::{Result, Var};
use candle_nn::optim::Optimizer;
use crate::{Decay, OptimParams};
/// R Adam optimiser
///
/// Described in [On the Variance of the Adaptive Learning Rate and Beyond](https://arxiv.org/abs/1908.03265)
#[derive(Debug)]
pub struct RAdam {
vars: Vec<VarRAdam>,
params: ParamsRAdam,
rho_inf: f64,
t: f64,
}
#[derive(Debug)]
struct VarRAdam {
theta: Var,
m: Var,
v: Var,
}
/// Parameters for the RAdam optimiser
#[derive(Clone, Debug, PartialEq, PartialOrd)]
pub struct ParamsRAdam {
/// Learning rate
pub lr: f64,
/// Coefficient for moving average of first moment
pub beta_1: f64,
/// Coefficient for moving average of second moment
pub beta_2: f64,
/// Weight decay
pub weight_decay: Option<Decay>,
/// Term added to denominator to improve numerical stability
pub eps: f64,
}
impl Default for ParamsRAdam {
fn default() -> Self {
Self {
lr: 0.001,
beta_1: 0.9,
beta_2: 0.999,
eps: 1e-8,
weight_decay: None,
}
}
}
impl Optimizer for RAdam {
type Config = ParamsRAdam;
fn new(vars: Vec<Var>, params: ParamsRAdam) -> Result<Self> {
let vars = vars
.into_iter()
.filter(|var| var.dtype().is_float())
.map(|var| {
let dtype = var.dtype();
let shape = var.shape();
let device = var.device();
let m = Var::zeros(shape, dtype, device)?;
let v = Var::zeros(shape, dtype, device)?;
Ok(VarRAdam { theta: var, m, v })
})
.collect::<Result<Vec<VarRAdam>>>()?;
// // Err(SGDError::NoMomentum)?;
// let mut params = params;
// params.t = 0;
let rho_inf = 2. / (1. - params.beta_2) - 1.;
Ok(Self {
vars,
params,
rho_inf,
t: 1.,
})
}
fn learning_rate(&self) -> f64 {
self.params.lr
}
fn step(&mut self, grads: &candle_core::backprop::GradStore) -> Result<()> {
// println!("prod {}", prod);
let rho_t = self.rho_inf
- 2. * self.t * self.params.beta_2.powf(self.t)
/ (1. - self.params.beta_2.powf(self.t));
if let Some(wd) = self.params.weight_decay {
match wd {
Decay::WeightDecay(wd) => {
for var in &self.vars {
let theta = &var.theta;
let m = &var.m;
let v = &var.v;
if let Some(grad) = grads.get(theta) {
let grad = &(grad + (wd * theta.as_tensor())?)?;
let m_next = ((self.params.beta_1 * m.as_tensor())?
+ ((1. - self.params.beta_1) * grad)?)?;
let v_next = ((self.params.beta_2 * v.as_tensor())?
+ ((1. - self.params.beta_2) * grad.powf(2.)?)?)?;
let m_hat = (&m_next / (1. - self.params.beta_1.powf(self.t)))?;
let delta = if rho_t > 5. {
let l = ((1. - self.params.beta_2.powf(self.t)).sqrt()
/ (&v_next.sqrt()? + self.params.eps)?)?;
let r = ((rho_t - 4.) * (rho_t - 2.) * self.rho_inf
/ ((self.rho_inf - 4.) * (self.rho_inf - 2.) * rho_t))
.sqrt();
(self.params.lr * r * (l * m_hat)?)?
} else {
(self.params.lr * m_hat)?
};
theta.set(&theta.sub(&(delta))?)?;
m.set(&m_next)?;
v.set(&v_next)?;
}
}
}
Decay::DecoupledWeightDecay(decay) => {
for var in &self.vars {
let theta = &var.theta;
let m = &var.m;
let v = &var.v;
if let Some(grad) = grads.get(theta) {
// decoupled weight decay step
theta
.set(&(theta.as_tensor() * self.params.lr.mul_add(-decay, 1.))?)?;
let m_next = ((self.params.beta_1 * m.as_tensor())?
+ ((1. - self.params.beta_1) * grad)?)?;
let v_next = ((self.params.beta_2 * v.as_tensor())?
+ ((1. - self.params.beta_2) * grad.powf(2.)?)?)?;
let m_hat = (&m_next / (1. - self.params.beta_1.powf(self.t)))?;
let delta = if rho_t > 5. {
let l = ((1. - self.params.beta_2.powf(self.t)).sqrt()
/ (&v_next.sqrt()? + self.params.eps)?)?;
let r = ((rho_t - 4.) * (rho_t - 2.) * self.rho_inf
/ ((self.rho_inf - 4.) * (self.rho_inf - 2.) * rho_t))
.sqrt();
(self.params.lr * r * (l * m_hat)?)?
} else {
(self.params.lr * m_hat)?
};
theta.set(&theta.sub(&(delta))?)?;
m.set(&m_next)?;
v.set(&v_next)?;
}
}
}
}
} else {
for var in &self.vars {
let theta = &var.theta;
let m = &var.m;
let v = &var.v;
if let Some(grad) = grads.get(theta) {
let m_next = ((self.params.beta_1 * m.as_tensor())?
+ ((1. - self.params.beta_1) * grad)?)?;
let v_next = ((self.params.beta_2 * v.as_tensor())?
+ ((1. - self.params.beta_2) * grad.powf(2.)?)?)?;
let m_hat = (&m_next / (1. - self.params.beta_1.powf(self.t)))?;
let delta = if rho_t > 5. {
let l = ((1. - self.params.beta_2.powf(self.t)).sqrt()
/ (&v_next.sqrt()? + self.params.eps)?)?;
let r = ((rho_t - 4.) * (rho_t - 2.) * self.rho_inf
/ ((self.rho_inf - 4.) * (self.rho_inf - 2.) * rho_t))
.sqrt();
(self.params.lr * r * (l * m_hat)?)?
} else {
(self.params.lr * m_hat)?
};
theta.set(&theta.sub(&(delta))?)?;
m.set(&m_next)?;
v.set(&v_next)?;
}
}
}
self.t += 1.;
Ok(())
}
fn set_learning_rate(&mut self, lr: f64) {
self.params.lr = lr;
}
}
impl OptimParams for RAdam {
fn params(&self) -> &Self::Config {
&self.params
}
fn set_params(&mut self, config: Self::Config) {
self.params = config;
}
}
impl RAdam {
/// Return the vars being optimised
#[must_use]
pub fn into_inner(self) -> Vec<Var> {
self.vars.into_iter().map(|v| v.theta).collect()
}
// pub fn push(&mut self, var: &Var) {
// self.vars.push(var.clone());
// }
}
#[cfg(test)]
mod tests {
// use candle_core::test_utils::{to_vec0_round, to_vec2_round};
use anyhow::Result;
use assert_approx_eq::assert_approx_eq;
use candle_core::{Device, Var};
use candle_nn::Optimizer;
use super::*;
#[test]
fn lr_test() -> Result<()> {
let params = ParamsRAdam {
lr: 0.004,
..Default::default()
};
// Now use backprop to run a linear regression between samples and get the coefficients back.
let w = Var::new(&[[0f32, 0.]], &Device::Cpu)?;
let b = Var::new(0f32, &Device::Cpu)?;
let mut optim = RAdam::new(vec![w.clone(), b.clone()], params)?;
assert_approx_eq!(0.004, optim.learning_rate());
optim.set_learning_rate(0.002);
assert_approx_eq!(0.002, optim.learning_rate());
Ok(())
}
#[test]
fn into_inner_test() -> Result<()> {
let params = ParamsRAdam::default();
let w = Var::new(&[[3f32, 1.]], &Device::Cpu)?;
let b = Var::new(-2f32, &Device::Cpu)?;
let optim = RAdam::new(vec![w.clone(), b.clone()], params)?;
let inner = optim.into_inner();
assert_eq!(inner[0].as_tensor().to_vec2::<f32>()?, &[[3f32, 1.]]);
assert_approx_eq!(inner[1].as_tensor().to_vec0::<f32>()?, -2_f32);
Ok(())
}
#[test]
fn params_test() -> Result<()> {
let params = ParamsRAdam {
lr: 0.004,
..Default::default()
};
// Now use backprop to run a linear regression between samples and get the coefficients back.
let w = Var::new(&[[0f32, 0.]], &Device::Cpu)?;
let b = Var::new(0f32, &Device::Cpu)?;
let mut optim = RAdam::new(vec![w.clone(), b.clone()], params.clone())?;
assert_eq!(params, optim.params().clone());
let new_params = ParamsRAdam {
lr: 0.002,
..Default::default()
};
optim.set_params(new_params.clone());
assert_eq!(new_params, optim.params().clone());
Ok(())
}
}