[[bench]]
harness = false
name = "mnist_bench"
[dependencies.candle-core]
version = "0.3.0"
[dependencies.candle-nn]
version = "0.3.0"
[dependencies.intel-mkl-src]
features = ["mkl-static-lp64-iomp"]
optional = true
version = "0.8.1"
[dependencies.log]
version = "0.4.20"
[dev-dependencies.anyhow]
features = ["backtrace"]
version = "1"
[dev-dependencies.assert_approx_eq]
version = "1.1.0"
[dev-dependencies.candle-datasets]
version = "0.3.0"
[dev-dependencies.clap]
features = ["derive"]
version = "4.4.6"
[dev-dependencies.criterion]
features = ["html_reports"]
version = "0.5.1"
[features]
cuda = ["candle-core/cuda", "candle-nn/cuda"]
default = []
mkl = ["dep:intel-mkl-src", "candle-core/mkl"]
[lints.clippy]
cargo = "warn"
complexity = "warn"
imprecise_flops = "warn"
pedantic = "warn"
perf = "warn"
style = "warn"
suspicious = "warn"
[lints.clippy.doc_markdown]
level = "allow"
priority = 1
[lints.clippy.float_cmp]
level = "allow"
priority = 1
[lints.clippy.missing_errors_doc]
level = "allow"
priority = 1
[lints.clippy.similar_names]
level = "allow"
priority = 1
[lints.clippy.uninlined_format_args]
level = "allow"
priority = 1
[package]
categories = ["science", "machine-learning", "optimisation"]
description = "Optimisers for use with candle, the minimalist ML framework"
edition = "2021"
exclude = ["*.ipynb"]
keywords = ["optimisers", "candle", "tensor", "machine-learning"]
license = "MIT"
name = "candle-optimisers"
readme = "README.md"
repository = "https://github.com/KGrewal1/optimisers"
version = "0.3.2"
[package.metadata.docs.rs]
rustdoc-args = ["--html-in-header", "./katex-header.html"]
[profile.bench]
lto = true