cache-rs 0.1.0

A high-performance, memory-efficient cache implementation supporting multiple eviction policies including LRU, LFU, LFUDA, SLRU and GDSF
Documentation

cache-rs

Build Status Codecov Crates.io Documentation License: MIT

A high-performance, memory-efficient cache library for Rust supporting multiple eviction algorithms with O(1) operations.

โœจ Features

  • Multiple eviction algorithms: LRU, LFU, LFUDA, SLRU, GDSF
  • High performance: All operations are O(1) with optimized data structures
  • Memory efficient: Minimal overhead with careful memory layout
  • no_std compatible: Works in embedded and resource-constrained environments
  • Thread-safe ready: Easy to wrap with Mutex/RwLock for concurrent access
  • Well documented: Comprehensive documentation with usage examples

๐Ÿš€ Quick Start

Add to your Cargo.toml:

[dependencies]
cache-rs = "0.1.0"

Basic usage:

use cache_rs::LruCache;
use std::num::NonZeroUsize;

let mut cache = LruCache::new(NonZeroUsize::new(100).unwrap());

cache.put("key", "value");
assert_eq!(cache.get(&"key"), Some(&"value"));

๐Ÿ“– Algorithm Guide

Choose the right cache algorithm for your use case:

LRU (Least Recently Used)

Best for: General-purpose caching with temporal locality

use cache_rs::LruCache;
use std::num::NonZeroUsize;

let mut cache = LruCache::new(NonZeroUsize::new(100).unwrap());
cache.put("recent", "data");

SLRU (Segmented LRU)

Best for: Workloads with scan resistance requirements

use cache_rs::SlruCache;
use std::num::NonZeroUsize;

// Total capacity: 100, Protected segment: 20
let mut cache = SlruCache::new(
    NonZeroUsize::new(100).unwrap(),
    NonZeroUsize::new(20).unwrap()
);

LFU (Least Frequently Used)

Best for: Workloads with strong frequency patterns

use cache_rs::LfuCache;
use std::num::NonZeroUsize;

let mut cache = LfuCache::new(NonZeroUsize::new(100).unwrap());
cache.put("frequent", "data");

LFUDA (LFU with Dynamic Aging)

Best for: Long-running applications where access patterns change

use cache_rs::LfudaCache;
use std::num::NonZeroUsize;

let mut cache = LfudaCache::new(NonZeroUsize::new(100).unwrap());

GDSF (Greedy Dual Size Frequency)

Best for: Variable-sized objects (images, files, documents)

use cache_rs::GdsfCache;
use std::num::NonZeroUsize;

let mut cache = GdsfCache::new(NonZeroUsize::new(1000).unwrap());
cache.put("image.jpg", image_data, 250); // key, value, size

๐Ÿ“Š Performance Comparison

Algorithm Get Operation Use Case Memory Overhead
LRU ~887ns General purpose Low
SLRU ~983ns Scan resistance Medium
GDSF ~7.5ยตs Size-aware Medium
LFUDA ~20.5ยตs Aging workloads Medium
LFU ~22.7ยตs Frequency-based Medium

Benchmarks run on mixed workloads with Zipf distribution

๐Ÿ—๏ธ no_std Support

Works out of the box in no_std environments:

#![no_std]
extern crate alloc;

use cache_rs::LruCache;
use core::num::NonZeroUsize;
use alloc::string::String;

let mut cache = LruCache::new(NonZeroUsize::new(10).unwrap());
cache.put(String::from("key"), "value");

โš™๏ธ Feature Flags

  • hashbrown (default): Use hashbrown HashMap for better performance
  • nightly: Enable nightly-only optimizations
  • std: Enable standard library features (disabled by default)
# Default: no_std + hashbrown (recommended for most use cases)
cache-rs = "0.1.0"

# std + hashbrown (recommended for std environments)
cache-rs = { version = "0.1.0", features = ["std"] }

# std + hashbrown + nightly optimizations
cache-rs = { version = "0.1.0", features = ["std", "nightly"] }

# no_std + nightly optimizations only
cache-rs = { version = "0.1.0", features = ["nightly"] }

# Only std::HashMap (not recommended - slower than hashbrown)
cache-rs = { version = "0.1.0", default-features = false, features = ["std"] }

๐Ÿงต Thread Safety

The cache types are !Send and !Sync by design for performance. For concurrent access:

use cache_rs::LruCache;
use std::sync::{Arc, Mutex};
use std::num::NonZeroUsize;

let cache = Arc::new(Mutex::new(
    LruCache::new(NonZeroUsize::new(100).unwrap())
));

// Clone Arc for use in other threads
let cache_clone = Arc::clone(&cache);

๐Ÿ”ง Advanced Usage

Custom Hash Function

use cache_rs::LruCache;
use std::collections::hash_map::RandomState;
use std::num::NonZeroUsize;

let cache = LruCache::with_hasher(
    NonZeroUsize::new(100).unwrap(),
    RandomState::new()
);

Size-aware Caching with GDSF

use cache_rs::GdsfCache;
use std::num::NonZeroUsize;

let mut cache = GdsfCache::new(NonZeroUsize::new(1000).unwrap());

// Cache different sized objects
cache.put("small.txt", "content", 10);
cache.put("medium.jpg", image_bytes, 500);
cache.put("large.mp4", video_bytes, 2000);

// GDSF automatically considers size, frequency, and recency

๐Ÿƒโ€โ™‚๏ธ Benchmarks

Run the included benchmarks to compare performance:

cargo bench

Example results on modern hardware:

  • LRU: Fastest for simple use cases (~887ns per operation)
  • SLRU: Good balance of performance and scan resistance (~983ns)
  • GDSF: Best for size-aware workloads (~7.5ยตs)
  • LFUDA/LFU: Best for frequency-based patterns (~20ยตs)

๐Ÿ“š Documentation

๐Ÿค Contributing

Contributions welcome! Please see CONTRIBUTING.md for guidelines.

Development

# Run all tests
cargo test --all

# Check formatting
cargo fmt --all -- --check

# Run clippy
cargo clippy --all-targets -- -D warnings

# Test no_std compatibility
cargo build --target thumbv6m-none-eabi --no-default-features --features hashbrown

๐Ÿ“„ License

Licensed under the MIT License.

๐Ÿ”’ Security

For security concerns, see SECURITY.md.