Getting started
use c2::{prelude::*, AABB, Circle, Capsule, Poly, Transformation, Rotation};
use std::f32::consts::PI;
fn main() {
let circle = Circle::new([0.0, 0.0], 15.0);
let aabb = AABB::new([10.0, 5.0], [20.0, 30.0]);
let collided = circle.collides_with(&aabb);
assert!(collided);
let capsule = Capsule::new([5.0, 5.0], [15.0, 10.0], 1.0);
let poly = Poly::from_slice(&[
[-1.0, -3.0],
[1.0, -3.0],
[1.0, 0.0],
[0.0, 1.0],
[-1.0, 0.0],
]);
let collided = capsule.collides_with(&poly);
assert!(!collided);
let transformation =
Transformation::new([5.0, 4.0], Rotation::radians(PI / 2.0));
let collided = circle.collides_with(&(poly, transformation));
assert!(collided);
let manifold = circle.manifold(&poly);
/*
The manifold is used for resolving collisions and has the following methods:
manifold.count() -> i32
manifold.depths() -> [f32; 2]
manifold.contact_points() -> [Vec2; 2]
manifold.normal() -> Vec2
*/
let gjk_response = poly.gjk(&circle).run();
/*
The result of the GJK algorithm:
gjk_response.distance() -> f32
gjk_response.closest_points() -> (Vec2, Vec2)
*/
}
Check out the library this builds on top of for additional documentation. Please note the section entitled NUMERIC ROBUSTNESS.