1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
use super::element::TchElement;
use super::TchTensor;
use burn_tensor::backend::Backend;
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
/// The device struct when using the `tch` backend.
///
/// Note that you need to provide the device index when using Cuda.
///
/// # Example
///
/// ```no_run
/// use burn_tch::LibTorchDevice;
///
/// let device_gpu_1 = LibTorchDevice::Cuda(0); // First GPU
/// let device_gpu_2 = LibTorchDevice::Cuda(1); // Second GPU
/// let device_cpu = LibTorchDevice::Cpu; // CPU
/// let device_mps = LibTorchDevice::Mps; // Metal Performance Shaders
/// let device_vulkan = LibTorchDevice::Vulkan; // Vulkan
/// ```
pub enum LibTorchDevice {
/// CPU device.
Cpu,
/// Cuda device with the given index. The index is the index of the Cuda device in the list of
/// all Cuda devices found on the system.
Cuda(usize),
/// Metal Performance Shaders device.
Mps,
/// Vulkan device.
Vulkan,
}
impl From<LibTorchDevice> for tch::Device {
fn from(device: LibTorchDevice) -> Self {
match device {
LibTorchDevice::Cpu => tch::Device::Cpu,
LibTorchDevice::Cuda(num) => tch::Device::Cuda(num),
LibTorchDevice::Mps => tch::Device::Mps,
LibTorchDevice::Vulkan => tch::Device::Vulkan,
}
}
}
impl From<tch::Device> for LibTorchDevice {
fn from(device: tch::Device) -> Self {
match device {
tch::Device::Cpu => LibTorchDevice::Cpu,
tch::Device::Cuda(num) => LibTorchDevice::Cuda(num),
tch::Device::Mps => LibTorchDevice::Mps,
tch::Device::Vulkan => LibTorchDevice::Vulkan,
}
}
}
impl Default for LibTorchDevice {
fn default() -> Self {
Self::Cpu
}
}
/// Tensor backend that uses `LibTorch` with the [tch] crate for executing tensor operations.
///
/// This backend is compatible with a wide range of hardwares ranging from CPUs to GPUs, but
/// requires `LibTorch` to be installed correctly. The CPU version can be downloaded
/// automatically and the CUDA version as well by setting the `TORCH_CUDA_VERSION` environment
/// variable. For more complex configurations, check out the manual installation for
/// [burn-tch](https://github.com/tracel-ai/burn/tree/main/burn-tch).
///
/// Refer to the [tch] crate for more information.
#[derive(Clone, Copy, Default, Debug)]
pub struct LibTorch<E = f32> {
_e: E,
}
impl<E: TchElement> Backend for LibTorch<E> {
type Device = LibTorchDevice;
type FullPrecisionElem = f32;
type FullPrecisionBackend = LibTorch<f32>;
type FloatTensorPrimitive<const D: usize> = TchTensor<E, D>;
type FloatElem = E;
type IntTensorPrimitive<const D: usize> = TchTensor<i64, D>;
type IntElem = i64;
type BoolTensorPrimitive<const D: usize> = TchTensor<bool, D>;
fn seed(seed: u64) {
tch::manual_seed(seed as i64);
}
fn ad_enabled() -> bool {
false
}
fn name() -> String {
"tch".to_string()
}
fn sync(device: &Self::Device) {
if let LibTorchDevice::Cuda(index) = device {
tch::Cuda::synchronize(*index as i64);
} else if let LibTorchDevice::Mps = device {
panic!("Can't sync MPS device")
}
}
}