1use core::mem;
2
3use burn_tensor::{
4 DType, Element, Shape, TensorData, TensorMetadata,
5 quantization::{
6 QParams, QTensorPrimitive, QuantizationMode, QuantizationScheme, QuantizationStrategy,
7 QuantizationType, SymmetricQuantization,
8 },
9};
10
11use alloc::vec::Vec;
12use ndarray::{ArcArray, ArrayD, IxDyn};
13
14use crate::element::QuantElement;
15
16#[derive(new, Debug, Clone)]
18pub struct NdArrayTensor<E> {
19 pub array: ArcArray<E, IxDyn>,
21}
22
23impl<E: Element> TensorMetadata for NdArrayTensor<E> {
24 fn dtype(&self) -> DType {
25 E::dtype()
26 }
27
28 fn shape(&self) -> Shape {
29 Shape::from(self.array.shape().to_vec())
30 }
31}
32
33#[derive(Debug, Clone)]
35pub enum NdArrayTensorFloat {
36 F32(NdArrayTensor<f32>),
38 F64(NdArrayTensor<f64>),
40}
41
42impl From<NdArrayTensor<f32>> for NdArrayTensorFloat {
43 fn from(value: NdArrayTensor<f32>) -> Self {
44 NdArrayTensorFloat::F32(value)
45 }
46}
47
48impl From<NdArrayTensor<f64>> for NdArrayTensorFloat {
49 fn from(value: NdArrayTensor<f64>) -> Self {
50 NdArrayTensorFloat::F64(value)
51 }
52}
53
54impl TensorMetadata for NdArrayTensorFloat {
55 fn dtype(&self) -> DType {
56 match self {
57 NdArrayTensorFloat::F32(tensor) => tensor.dtype(),
58 NdArrayTensorFloat::F64(tensor) => tensor.dtype(),
59 }
60 }
61
62 fn shape(&self) -> Shape {
63 match self {
64 NdArrayTensorFloat::F32(tensor) => tensor.shape(),
65 NdArrayTensorFloat::F64(tensor) => tensor.shape(),
66 }
67 }
68}
69
70#[macro_export]
72macro_rules! new_tensor_float {
73 ($tensor:expr) => {{
75 match E::dtype() {
76 burn_tensor::DType::F64 => $crate::NdArrayTensorFloat::F64($tensor),
77 burn_tensor::DType::F32 => $crate::NdArrayTensorFloat::F32($tensor),
78 _ => unimplemented!("Unsupported dtype"),
80 }
81 }};
82}
83
84#[macro_export]
90macro_rules! execute_with_float_dtype {
91 (($lhs:expr, $rhs:expr), $op:expr) => {{
93 let lhs_dtype = burn_tensor::TensorMetadata::dtype(&$lhs);
94 let rhs_dtype = burn_tensor::TensorMetadata::dtype(&$rhs);
95 match ($lhs, $rhs) {
96 ($crate::NdArrayTensorFloat::F64(lhs), $crate::NdArrayTensorFloat::F64(rhs)) => {
97 $crate::NdArrayTensorFloat::F64($op(lhs, rhs))
98 }
99 ($crate::NdArrayTensorFloat::F32(lhs), $crate::NdArrayTensorFloat::F32(rhs)) => {
100 $crate::NdArrayTensorFloat::F32($op(lhs, rhs))
101 }
102 _ => panic!(
103 "Data type mismatch (lhs: {:?}, rhs: {:?})",
104 lhs_dtype, rhs_dtype
105 ),
106 }
107 }};
108
109 (($lhs:expr, $rhs:expr), $element:ident, $op:expr) => {{
111 let lhs_dtype = burn_tensor::TensorMetadata::dtype(&$lhs);
112 let rhs_dtype = burn_tensor::TensorMetadata::dtype(&$rhs);
113 match ($lhs, $rhs) {
114 ($crate::NdArrayTensorFloat::F64(lhs), $crate::NdArrayTensorFloat::F64(rhs)) => {
115 type $element = f64;
116 $crate::NdArrayTensorFloat::F64($op(lhs, rhs))
117 }
118 ($crate::NdArrayTensorFloat::F32(lhs), $crate::NdArrayTensorFloat::F32(rhs)) => {
119 type $element = f32;
120 $crate::NdArrayTensorFloat::F32($op(lhs, rhs))
121 }
122 _ => panic!(
123 "Data type mismatch (lhs: {:?}, rhs: {:?})",
124 lhs_dtype, rhs_dtype
125 ),
126 }
127 }};
128
129 (($lhs:expr, $rhs:expr) => $op:expr) => {{
131 let lhs_dtype = burn_tensor::TensorMetadata::dtype(&$lhs);
132 let rhs_dtype = burn_tensor::TensorMetadata::dtype(&$rhs);
133 match ($lhs, $rhs) {
134 ($crate::NdArrayTensorFloat::F64(lhs), $crate::NdArrayTensorFloat::F64(rhs)) => {
135 $op(lhs, rhs)
136 }
137 ($crate::NdArrayTensorFloat::F32(lhs), $crate::NdArrayTensorFloat::F32(rhs)) => {
138 $op(lhs, rhs)
139 }
140 _ => panic!(
141 "Data type mismatch (lhs: {:?}, rhs: {:?})",
142 lhs_dtype, rhs_dtype
143 ),
144 }
145 }};
146
147 ($tensor:expr, $op:expr) => {{
149 match $tensor {
150 $crate::NdArrayTensorFloat::F64(tensor) => $crate::NdArrayTensorFloat::F64($op(tensor)),
151 $crate::NdArrayTensorFloat::F32(tensor) => $crate::NdArrayTensorFloat::F32($op(tensor)),
152 }
153 }};
154
155 ($tensor:expr, $element:ident, $op:expr) => {{
157 match $tensor {
158 $crate::NdArrayTensorFloat::F64(tensor) => {
159 type $element = f64;
160 $crate::NdArrayTensorFloat::F64($op(tensor))
161 }
162 $crate::NdArrayTensorFloat::F32(tensor) => {
163 type $element = f32;
164 $crate::NdArrayTensorFloat::F32($op(tensor))
165 }
166 }
167 }};
168
169 ($tensor:expr => $op:expr) => {{
171 match $tensor {
172 $crate::NdArrayTensorFloat::F64(tensor) => $op(tensor),
173 $crate::NdArrayTensorFloat::F32(tensor) => $op(tensor),
174 }
175 }};
176
177 ($tensor:expr, $element:ident => $op:expr) => {{
179 match $tensor {
180 $crate::NdArrayTensorFloat::F64(tensor) => {
181 type $element = f64;
182 $op(tensor)
183 }
184 $crate::NdArrayTensorFloat::F32(tensor) => {
185 type $element = f32;
186 $op(tensor)
187 }
188 }
189 }};
190}
191
192mod utils {
193 use burn_common::tensor::is_contiguous;
194
195 use super::*;
196
197 impl<E> NdArrayTensor<E>
198 where
199 E: Element,
200 {
201 pub(crate) fn into_data(self) -> TensorData {
202 let shape = self.shape();
203
204 let vec = if self.is_contiguous() {
205 match self.array.try_into_owned_nocopy() {
206 Ok(owned) => {
207 let (mut vec, offset) = owned.into_raw_vec_and_offset();
208 if let Some(offset) = offset {
209 vec.drain(..offset);
210 }
211 vec
212 }
213 Err(array) => array.into_iter().collect(),
214 }
215 } else {
216 self.array.into_iter().collect()
217 };
218
219 TensorData::new(vec, shape)
220 }
221
222 pub(crate) fn is_contiguous(&self) -> bool {
223 let shape = self.array.shape();
224 let mut strides = Vec::with_capacity(self.array.strides().len());
225
226 for &stride in self.array.strides() {
227 if stride <= 0 {
228 return false;
229 }
230 strides.push(stride as usize);
231 }
232 is_contiguous(shape, &strides)
233 }
234 }
235}
236
237#[macro_export(local_inner_macros)]
239macro_rules! to_typed_dims {
240 (
241 $n:expr,
242 $dims:expr,
243 justdim
244 ) => {{
245 let mut dims = [0; $n];
246 for i in 0..$n {
247 dims[i] = $dims[i];
248 }
249 let dim: Dim<[usize; $n]> = Dim(dims);
250 dim
251 }};
252}
253
254#[macro_export(local_inner_macros)]
256macro_rules! reshape {
257 (
258 ty $ty:ty,
259 n $n:expr,
260 shape $shape:expr,
261 array $array:expr
262 ) => {{
263 let dim = $crate::to_typed_dims!($n, $shape.dims, justdim);
264 let array: ndarray::ArcArray<$ty, Dim<[usize; $n]>> = match $array.is_standard_layout() {
265 true => {
266 match $array.to_shape(dim) {
267 Ok(val) => val.into_shared(),
268 Err(err) => {
269 core::panic!("Shape should be compatible shape={dim:?}: {err:?}");
270 }
271 }
272 },
273 false => $array.to_shape(dim).unwrap().as_standard_layout().into_shared(),
274 };
275 let array = array.into_dyn();
276
277 NdArrayTensor::new(array)
278 }};
279 (
280 ty $ty:ty,
281 shape $shape:expr,
282 array $array:expr,
283 d $D:expr
284 ) => {{
285 match $D {
286 1 => reshape!(ty $ty, n 1, shape $shape, array $array),
287 2 => reshape!(ty $ty, n 2, shape $shape, array $array),
288 3 => reshape!(ty $ty, n 3, shape $shape, array $array),
289 4 => reshape!(ty $ty, n 4, shape $shape, array $array),
290 5 => reshape!(ty $ty, n 5, shape $shape, array $array),
291 6 => reshape!(ty $ty, n 6, shape $shape, array $array),
292 _ => core::panic!("NdArray supports arrays up to 6 dimensions, received: {}", $D),
293 }
294 }};
295}
296
297impl<E> NdArrayTensor<E>
298where
299 E: Element,
300{
301 pub fn from_data(mut data: TensorData) -> NdArrayTensor<E> {
303 let shape = mem::take(&mut data.shape);
304
305 let array = match data.into_vec::<E>() {
306 Ok(vec) => unsafe { ArrayD::from_shape_vec_unchecked(shape, vec) }.into_shared(),
308 Err(err) => panic!("Data should have the same element type as the tensor {err:?}"),
309 };
310
311 NdArrayTensor::new(array)
312 }
313}
314
315#[derive(Clone, Debug)]
317pub struct NdArrayQTensor<Q: QuantElement> {
318 pub qtensor: NdArrayTensor<Q>,
320 pub scheme: QuantizationScheme,
322 pub qparams: Vec<QParams<f32, Q>>,
324}
325
326impl<Q: QuantElement> NdArrayQTensor<Q> {
327 pub fn strategy(&self) -> QuantizationStrategy {
329 match self.scheme {
330 QuantizationScheme::PerTensor(QuantizationMode::Symmetric, QuantizationType::QInt8) => {
331 QuantizationStrategy::PerTensorSymmetricInt8(SymmetricQuantization::init(
332 self.qparams[0].scale,
333 ))
334 }
335 }
336 }
337}
338
339impl<Q: QuantElement> QTensorPrimitive for NdArrayQTensor<Q> {
340 fn scheme(&self) -> &QuantizationScheme {
341 &self.scheme
342 }
343}
344
345impl<Q: QuantElement> TensorMetadata for NdArrayQTensor<Q> {
346 fn dtype(&self) -> DType {
347 DType::QFloat(self.scheme)
348 }
349
350 fn shape(&self) -> Shape {
351 self.qtensor.shape()
352 }
353}
354
355#[cfg(test)]
356mod tests {
357 use crate::NdArray;
358
359 use super::*;
360 use burn_common::rand::get_seeded_rng;
361 use burn_tensor::{
362 Distribution,
363 ops::{FloatTensorOps, QTensorOps},
364 quantization::{QuantizationParametersPrimitive, QuantizationType},
365 };
366
367 #[test]
368 fn should_support_into_and_from_data_1d() {
369 let data_expected = TensorData::random::<f32, _, _>(
370 Shape::new([3]),
371 Distribution::Default,
372 &mut get_seeded_rng(),
373 );
374 let tensor = NdArrayTensor::<f32>::from_data(data_expected.clone());
375
376 let data_actual = tensor.into_data();
377
378 assert_eq!(data_expected, data_actual);
379 }
380
381 #[test]
382 fn should_support_into_and_from_data_2d() {
383 let data_expected = TensorData::random::<f32, _, _>(
384 Shape::new([2, 3]),
385 Distribution::Default,
386 &mut get_seeded_rng(),
387 );
388 let tensor = NdArrayTensor::<f32>::from_data(data_expected.clone());
389
390 let data_actual = tensor.into_data();
391
392 assert_eq!(data_expected, data_actual);
393 }
394
395 #[test]
396 fn should_support_into_and_from_data_3d() {
397 let data_expected = TensorData::random::<f32, _, _>(
398 Shape::new([2, 3, 4]),
399 Distribution::Default,
400 &mut get_seeded_rng(),
401 );
402 let tensor = NdArrayTensor::<f32>::from_data(data_expected.clone());
403
404 let data_actual = tensor.into_data();
405
406 assert_eq!(data_expected, data_actual);
407 }
408
409 #[test]
410 fn should_support_into_and_from_data_4d() {
411 let data_expected = TensorData::random::<f32, _, _>(
412 Shape::new([2, 3, 4, 2]),
413 Distribution::Default,
414 &mut get_seeded_rng(),
415 );
416 let tensor = NdArrayTensor::<f32>::from_data(data_expected.clone());
417
418 let data_actual = tensor.into_data();
419
420 assert_eq!(data_expected, data_actual);
421 }
422
423 #[test]
424 fn should_support_qtensor_strategy() {
425 type B = NdArray<f32, i64, i8>;
426 let scale: f32 = 0.009_019_608;
427 let device = Default::default();
428
429 let tensor = B::float_from_data(TensorData::from([-1.8f32, -1.0, 0.0, 0.5]), &device);
430 let scheme =
431 QuantizationScheme::PerTensor(QuantizationMode::Symmetric, QuantizationType::QInt8);
432 let qparams = QuantizationParametersPrimitive {
433 scale: B::float_from_data(TensorData::from([scale]), &device),
434 offset: None,
435 };
436 let qtensor: NdArrayQTensor<i8> = B::quantize(tensor, &scheme, qparams);
437
438 assert_eq!(qtensor.scheme(), &scheme);
439 assert_eq!(
440 qtensor.strategy(),
441 QuantizationStrategy::PerTensorSymmetricInt8(SymmetricQuantization::init(scale))
442 );
443 }
444}