btreec 0.3.0

Rust bindings for btree.c
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
// Copyright 2020 Joshua J Baker. All rights reserved.
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include "btree.h"

static void *(*_malloc)(size_t) = NULL;
static void (*_free)(void *) = NULL;

#define btmalloc (_malloc?_malloc:malloc)
#define btfree (_free?_free:free)

// btree_set_allocator allows for configuring a custom allocator for
// all btree library operations. This function, if needed, should be called
// only once at startup and a prior to calling btree_new().
void btree_set_allocator(void *(malloc)(size_t), void (*free)(void*)) {
    _malloc = malloc;
    _free = free;
}

#define panic(_msg_) { \
    fprintf(stderr, "panic: %s (%s:%d)\n", (_msg_), __FILE__, __LINE__); \
    exit(1); \
}(void)(0)

struct node {
    short num_items;
    bool leaf;
    char unused[sizeof(void*)-3]; // explicit padding
    char *items;
    struct node *children[];
};

static void *get_item_at(size_t elsz, struct node *node, size_t index) {
    return node->items+elsz*index;
}

static void set_item_at(size_t elsz, struct node *node, size_t index, 
                        const void *item) 
{
    memcpy(get_item_at(elsz, node, index), item, elsz);
}

static void copy_item_into(size_t elsz, struct node *node, size_t index, 
                           void *into)
{ 
    memcpy(into, get_item_at(elsz, node, index), elsz);
}

static void copy_item(size_t elsz, struct node *node_a, size_t index_a, 
                                   struct node *node_b, size_t index_b) 
{
    memcpy(get_item_at(elsz, node_a, index_a), 
           get_item_at(elsz, node_b, index_b), elsz);
}

static void swap_item_at(size_t elsz, struct node *node, size_t index, 
                         const void *item, void *into)
{ 
    void *ptr = get_item_at(elsz, node, index);
    memcpy(into, ptr, elsz);
    memcpy(ptr, item, elsz);
}

struct group {
    struct node **nodes;
    size_t len, cap;
};

struct pool {
    struct group leaves;
    struct group branches;
};

// btree is a standard B-tree with post-set splits.
struct btree {
    int (*_compare)(const void *a, const void *b, void *udata);
    void *udata;
    struct node *root;
    size_t count;
    struct pool pool;
    bool oom;
    char unused[sizeof(void*)-1]; // explicit padding
    size_t height;
    size_t max_items;
    size_t min_items;
    size_t elsize;
    void *spares[3];    // holds the result of sets and deletes, etc.
    void *litem;        // last load item
    struct node *lnode; // last load node
};

static int btcompare(struct btree *btree, const void *a, const void *b) {
    return btree->_compare(a, b, btree->udata);
}

static struct node *node_new(struct btree *btree, bool leaf) {
    size_t sz = sizeof(struct node); 
    if (!leaf) {
        sz += sizeof(struct node*)*btree->max_items;
    }
    size_t itemsoff = sz;
    sz += btree->elsize*(btree->max_items-1);
    struct node *node = btmalloc(sz);
    if (!node) {
        return NULL;
    }
    node->leaf = leaf;
    node->num_items = 0;
    node->items = (char*)node+itemsoff;
    return node;
}

static void node_free(struct node *node) {
    if (!node->leaf) {
        for (int i = 0; i < node->num_items; i++) {
            node_free(node->children[i]);
        }
        node_free(node->children[node->num_items]);
    }
    btfree(node);
}

static struct node *gimme_node(struct group *group) {
    if (group->len == 0) panic("out of nodes");
    return group->nodes[--group->len];
}

static struct node *gimme_leaf(struct btree *btree) {
    return gimme_node(&btree->pool.leaves);
}

static struct node *gimme_branch(struct btree *btree) {
    return gimme_node(&btree->pool.branches);
}

static bool grow_group(struct group *group) {
    size_t cap = group->cap?group->cap*2:1;
    struct node **nodes = btmalloc(sizeof(struct node*)*cap);
    if (!nodes) {
        return false;
    }
    memcpy(nodes, group->nodes, group->len*sizeof(struct node*));
    btfree(group->nodes);
    group->nodes = nodes;
    group->cap = cap;
    return true;
}

static void takeaway(struct btree *btree, struct node *node) {
    const size_t MAXLEN = 32;
    struct group *group;
    if (node->leaf) {
        group = &btree->pool.leaves;
    } else {
        group = &btree->pool.branches;
    }
    if (group->len == MAXLEN) {
        btfree(node);
        return;
    }
    if (group->len == group->cap) {
        if (!grow_group(group)) {
            btfree(node);
            return;
        }
    }
    group->nodes[group->len++] = node;
}

// fill_pool fills the node pool prior to inserting items. This ensures there
// is enough memory before we begin doing to things like splits and tree
// rebalancing. There needs to be at least one available leaf and N branches
// where N is equal to the height of the tree.
static bool fill_pool(struct btree *btree) {
    if (btree->pool.leaves.len == 0) {
        if (btree->pool.leaves.cap == 0) {
            if (!grow_group(&btree->pool.leaves)) {
                return false;
            }
        }
        struct node *leaf = node_new(btree, true);
        if (!leaf) {
            return false;
        }
        btree->pool.leaves.nodes[btree->pool.leaves.len++] = leaf;
    }
    while (btree->pool.branches.len < btree->height) {
        if (btree->pool.branches.len == btree->pool.branches.cap) {
            if (!grow_group(&btree->pool.branches)) {
                return false;
            }
        }
        struct node *branch = node_new(btree, false);
        if (!branch) {
            return false;
        }
        btree->pool.branches.nodes[btree->pool.branches.len++] = branch;
    }
    return true;
}

static void node_join(size_t elsize, struct node *left, struct node *right) {
    memcpy(left->items+elsize*(size_t)left->num_items,
           right->items,
           (size_t)right->num_items*elsize);
    if (!left->leaf) {
        memcpy(&left->children[left->num_items],
               &right->children[0],
               (size_t)(right->num_items+1)*sizeof(struct node*));
    }
    left->num_items += right->num_items;
}

static void node_shift_right(size_t elsize, struct node *node, size_t index) {
    memmove(node->items+elsize*(index+1), 
            node->items+elsize*index,
            ((size_t)node->num_items-index)*elsize);
    if (!node->leaf) {
        memmove(&node->children[index+1],
                &node->children[index],
                ((size_t)node->num_items-index+1)*sizeof(struct node*));
    }
    node->num_items++;
}

static void node_shift_left(size_t elsize, struct node *node, size_t index, 
                            bool for_merge) 
{
    memmove(node->items+elsize*index, 
            node->items+elsize*(index+1),
            ((size_t)node->num_items-index)*elsize);
    if (!node->leaf) {
        if (for_merge) {
            index++;
        }
        memmove(&node->children[index],
                &node->children[index+1],
                ((size_t)node->num_items-index+1)*sizeof(struct node*));
    }
    node->num_items--;
}

// btree_new returns a new B-tree. 
// Param `elsize` is the size of each element in the tree. Every element that
// is inserted, deleted, or searched will be this size.
// Param `max_items` is the maximum number of items per node. Setting this to
// zero will default to 256. The max is 4096.
// Param `compare` is a function that compares items in the tree. See the 
// qsort stdlib function for an example of how this function works.
// The btree must be freed with btree_free(). 
struct btree *btree_new(size_t elsize, size_t max_items,
                        int (*compare)(const void *a, const void *b, 
                                       void *udata),
                        void *udata)
{
    if (max_items == 0) {
        max_items = 256;
    } else {
        if (max_items % 2 == 1) max_items--;
        if (max_items < 4) max_items = 4;
        if (max_items > 4096) max_items = 4096;
    }
    if (elsize == 0) panic("elsize is zero");
    if (compare == NULL) panic("compare is null");
    struct btree *btree = btmalloc(sizeof(struct btree));
    if (!btree) {
        return NULL;
    }
    memset(btree, 0, sizeof(struct btree));
    int nspares = sizeof(btree->spares)/sizeof(void*);
    for (int i = 0; i < nspares; i++) {
        btree->spares[i] = btmalloc(elsize);
        if (!btree->spares[i]) {
            for (i = 0; i < nspares; i++) {
                if (btree->spares[i]) {
                    btfree(btree->spares[i]);
                }        
            }
            btfree(btree);
            return NULL;
        }
    }
    btree->_compare = compare;
    btree->max_items = max_items;
    btree->min_items = btree->max_items*40/100;
    btree->elsize = elsize;
    btree->udata = udata;
    return btree;
}

static void release_pool(struct btree *btree) {
    for (size_t i = 0; i < btree->pool.leaves.len; i++) {
        btfree(btree->pool.leaves.nodes[i]);
    }
    btfree(btree->pool.leaves.nodes);
    for (size_t i = 0; i < btree->pool.branches.len; i++) {
        btfree(btree->pool.branches.nodes[i]);
    }
    btfree(btree->pool.branches.nodes);
    memset(&btree->pool, 0, sizeof(struct pool));
}

// btree_free frees the btree. The items in the btree are not touched, so if
// you need to free those then do so prior to calling this function.
void btree_free(struct btree *btree) {
    if (btree->root) {
        node_free(btree->root);
    }
    release_pool(btree);
    int nspares = sizeof(btree->spares)/sizeof(void*);
    for (int i = 0; i < nspares; i++) {
        btfree(btree->spares[i]);
    }
    btfree(btree);
}

static void reset_load_fields(struct btree *btree) {
    btree->litem = NULL;
    btree->lnode = NULL;
}

// btree_height returns the height of the btree.
size_t btree_height(struct btree *btree) {
    return btree->height;
}

// btree_count returns the number of items in the btree.
size_t btree_count(struct btree *btree) {
    return btree->count;
}

static void node_split(struct btree *btree, struct node *node, 
                       struct node **right, void **median, bool lean_left) 
{
    int mid;
    if (lean_left) {
        // Split so the left node has as many items as possible, leaving the
        // new right with the minimum items. This makes more space available to
        // the right node for sequential inserts and bulk loading.
        mid = (int)(btree->max_items-1-btree->min_items);
        int mdif = (node->num_items-(mid+1))-(int)btree->min_items;
        if (mdif < 0) {
            mid += mdif;
        }
    } else {
        // split so that both left and right have the same number of items.
        mid = (int)(btree->max_items-1)/2;
    }
    *median = get_item_at(btree->elsize, node, (size_t)mid);    
    *right = node->leaf ? gimme_leaf(btree) : gimme_branch(btree);
    (*right)->leaf = node->leaf;
    (*right)->num_items = node->num_items-((short)mid+1);
    memmove((*right)->items,
            node->items+(int)btree->elsize*(mid+1),
            (size_t)(*right)->num_items*btree->elsize);
    if (!node->leaf) {
        for (int i = 0; i <= (*right)->num_items; i++) {
            (*right)->children[i] = node->children[mid+1+i];
        }
    }
    node->num_items = (short)mid;
}

static int node_find(struct btree *btree, struct node *node, void *key, 
                     bool *found, uint64_t *hint, int depth) 
{
    int low = 0;
    int high = node->num_items-1;
    if (hint && depth < 8) {
        int index = ((uint8_t*)hint)[depth];
        if (index > 0) {
            if (index > node->num_items-1) {
                index = node->num_items-1;
            }
            void *item = get_item_at(btree->elsize, node, (size_t)index);
            int cmp = btcompare(btree, key, item);
            if (cmp == 0) {
                *found = true;
                return index;
            }
            if (cmp > 0) {
                low = index+1;
            } else {
                high = index-1;
            }
        }
    }
    int index;
    while ( low <= high ) {
        int mid = (low + high) / 2;
        void *item = get_item_at(btree->elsize, node, (size_t)mid);
        int cmp = btcompare(btree, key, item);
        if (cmp == 0) {
            *found = true;
            index = mid;
            goto done;
        }
        if (cmp < 0) {
            high = mid - 1;
        } else {
            low = mid + 1;
        }
    }
    *found = false;
    index = low;
done:
    if (hint && depth < 8) {
        ((uint8_t*)hint)[depth] = (uint8_t)index;
    }
    return index;
}

static bool node_set(struct btree *btree, struct node *node, void *item, 
                     bool lean_left, uint64_t *hint, int depth) 
{
    bool found = false;
    int i = node_find(btree, node, item, &found, hint, depth);
    if (found) {
        swap_item_at(btree->elsize, node, (size_t)i, item, btree->spares[0]);
        return true;
    }
    if (node->leaf) {
        node_shift_right(btree->elsize, node, (size_t)i);
        set_item_at(btree->elsize, node, (size_t)i, item);
        return false;
    }
    if (node_set(btree, node->children[i], item, lean_left, hint, depth+1)) {
        return true;
    }
    if ((size_t)node->children[i]->num_items == (btree->max_items-1)) {
        void *median = NULL;
        struct node *right = NULL;
        node_split(btree, node->children[i], &right, &median, lean_left);
        node_shift_right(btree->elsize, node, (size_t)i);
        set_item_at(btree->elsize, node, (size_t)i, median);
        node->children[i+1] = right;
    }
    return false;
}

static void *btree_set_x(struct btree *btree, void *item, bool lean_left,
                         uint64_t *hint)
{
    reset_load_fields(btree);

    if (!item) {
        panic("item is null");
    }

    btree->oom = false;
    if (!fill_pool(btree)) {
        btree->oom = true;
        return NULL;
    }
    if (!btree->root) {
        btree->root = gimme_leaf(btree);
        set_item_at(btree->elsize, btree->root, 0, item);
        btree->root->num_items = 1;
        btree->count++;
        btree->height++;
        return NULL;
    }
    if (node_set(btree, btree->root, item, lean_left, hint, 0)) {
        return btree->spares[0];
    }
    btree->count++;
    if ((size_t)btree->root->num_items == (btree->max_items-1)) {
        void *old_root = btree->root;
        struct node *right = NULL;
        void *median = NULL;
        node_split(btree, old_root, &right, &median, lean_left);
        btree->root = gimme_branch(btree);
        btree->root->children[0] = old_root;
        set_item_at(btree->elsize, btree->root, 0, median);
        btree->root->children[1] = right;
        btree->root->num_items = 1;
        btree->height++;
    }
    return NULL;    
}

// btree_set inserts or replaces an item in the btree. If an item is replaced
// then it is returned otherwise NULL is returned. 
// The `btree_set`, `btree_set_hint`, and `btree_load` are the only btree 
// operations that allocates memory. If the system could not allocate the
// memory then NULL is returned and btree_oom() returns true.
void *btree_set(struct btree *btree, void *item) {
    return btree_set_x(btree, item, false, NULL);
}

// btree_set_hint is the same as btree_set except that an optional "hint" can 
// be provided which may make the operation quicker when done as a batch or 
// in a userspace context.
// The `btree_set`, `btree_set_hint`, and `btree_load` are the only btree 
// operations that allocates memory. If the system could not allocate the
// memory then NULL is returned and btree_oom() returns true.
void *btree_set_hint(struct btree *btree, void *item, uint64_t *hint) {
    return btree_set_x(btree, item, false, hint);
}

// btree_load is the same as btree_set but is optimized for sequential bulk 
// loading. It can be up to 10x faster than btree_set when the items are
// in exact order, but up to 25% slower when not in exact order.
// The `btree_set`, `btree_set_hint`, and `btree_load` are the only btree 
// operations that allocates memory. If the system could not allocate the
// memory then NULL is returned and btree_oom() returns true.
void *btree_load(struct btree *btree, void *item) {
    if (!item) {
        panic("item is null");
    }
    if (btree->litem && 
        btree->lnode && 
        (size_t)btree->lnode->num_items < btree->max_items-2 &&
        btcompare(btree, item, btree->litem) > 0)
    {
        set_item_at(btree->elsize, btree->lnode, 
                    (size_t)btree->lnode->num_items, item);
        btree->lnode->num_items++;
        btree->count++;
        btree->oom = false;
        return NULL;
    }
    void *prev = btree_set_x(btree, item, true, NULL);
    if (prev) {
        return prev;
    }
    struct node *node = btree->root;
    for (;;) {
        if (node->leaf) {
            btree->lnode = node;
            btree->litem = get_item_at(btree->elsize, node, 
                                       (size_t)(node->num_items-1));
            break;
        }
        node = node->children[node->num_items];
    }
    return NULL;
}

// btree_get_hint is the same as btree_get except that an optional "hint" can 
// be provided which may make the operation quicker when done as a batch or 
// in a userspace context.
void *btree_get_hint(struct btree *btree, void *key, uint64_t *hint) {
    struct node *node = btree->root;
    if (!node) {
        return NULL;
    }
    size_t elsz = btree->elsize;
    for (int depth = 0;;depth++) {
        bool found = false;
        int i = node_find(btree, node, key, &found, hint, depth);
        if (found) {
            return get_item_at(elsz, node, (size_t)i);
        }
        if (node->leaf) {
            return NULL;
        }
        node = node->children[i];
    }
}

// btree_get returns the item based on the provided key. If the item is not
// found then NULL is returned.
void *btree_get(struct btree *btree, void *key) {
    return btree_get_hint(btree, key, NULL);
}

enum delact {
    DELKEY, POPFRONT, POPBACK, POPMAX,
};

static bool node_delete(struct btree *btree, struct node *node, enum delact act, 
                        size_t index, void *key, void *prev, uint64_t *hint, 
                        int depth)
{
    int i = 0;
    bool found = false;
    switch (act) {
    case POPMAX:
        i = node->num_items-1;
        found = true;
        break;
    case POPFRONT:
        i = 0;
        found = node->leaf;
        break;
    case POPBACK:
        if (!node->leaf) {
            i = node->num_items;
            found = false;
        } else {
            i = node->num_items-1;
            found = true;
        }
        break;
    case DELKEY:
        i = node_find(btree, node, key, &found, hint, depth);
        break;
    }
    if (node->leaf) {
        if (found) {
            // item was found in leaf, copy its contents and delete it.
            copy_item_into(btree->elsize, node, (size_t)i, prev);
            node_shift_left(btree->elsize, node, (size_t)i, false);
            return true;
        }
        return false;
    }
    // branch
    bool deleted = false;
    if (found) {
        if (act == POPMAX) {
            // popping off the max item into into its parent branch to maintain
            // a balanced tree.
            i++;
            node_delete(btree, node->children[i], POPMAX, 0, NULL,  prev, hint, 
                        depth+1);
            deleted = true;
        } else {
            // item was found in branch, copy its contents, delete it, and 
            // begin popping off the max items in child nodes.
            copy_item_into(btree->elsize, node, (size_t)i, prev);
            node_delete(btree, node->children[i], POPMAX, 0, NULL, 
                        btree->spares[2], hint, depth+1);
            set_item_at(btree->elsize, node, (size_t)i, btree->spares[2]);
            deleted = true;
        }
    } else {
        // item was not found in this branch, keep searching.
        deleted = node_delete(btree, node->children[i], act, index, key, prev, 
                              hint, depth+1);
    }
    if (!deleted) {
        return false;
    }
    
    if ((size_t)node->children[i]->num_items >= btree->min_items) {
        return true;
    }
    
    if (i == node->num_items) {
        i--;
    }

    struct node *left = node->children[i];
    struct node *right = node->children[i+1];

    if ((size_t)(left->num_items + right->num_items + 1) < 
        (btree->max_items-1)) 
    {
        // merge left + item + right
        copy_item(btree->elsize, left, (size_t)left->num_items, node, 
                  (size_t)i);
        left->num_items++;
        node_join(btree->elsize, left, right);
        takeaway(btree, right);
        node_shift_left(btree->elsize, node, (size_t)i, true);
    } else if (left->num_items > right->num_items) {
        // move left -> right
        node_shift_right(btree->elsize, right, 0);
        copy_item(btree->elsize, right, 0, node, (size_t)i);
        if (!left->leaf) {
            right->children[0] = left->children[left->num_items];
        }
        copy_item(btree->elsize, node, (size_t)i, left, 
                  (size_t)(left->num_items-1));
        if (!left->leaf) {
            left->children[left->num_items] = NULL;
        }
        left->num_items--;
    } else {
        // move right -> left
        copy_item(btree->elsize, left, (size_t)left->num_items, node, (size_t)i);
        if (!left->leaf) {
            left->children[left->num_items+1] = right->children[0];
        }
        left->num_items++;
        copy_item(btree->elsize, node, (size_t)i, right, 0);
        node_shift_left(btree->elsize, right, 0, false);
    }
    return deleted;
}

static void *delete_x(struct btree *btree, enum delact act, size_t index, 
                      void *key, uint64_t *hint) 
{
    reset_load_fields(btree);
    
    if (!btree->root) {
        return NULL;
    }
    bool deleted = node_delete(btree, btree->root, act, index, key, 
                               btree->spares[0], hint, 0);
    if (!deleted) {
        return NULL;
    }
    if (btree->root->num_items == 0) {
        struct node *old_root = btree->root;
        if (!btree->root->leaf) {
            btree->root = btree->root->children[0];
        } else {
            btree->root = NULL;
        }
        takeaway(btree, old_root);
        btree->height--;
    }
    btree->count--;
    return btree->spares[0];
}

// btree_delete_hint is the same as btree_delete except that an optional "hint"
// can be provided which may make the operation quicker when done as a batch or 
// in a userspace context.
void *btree_delete_hint(struct btree *btree, void *key, uint64_t *hint) {
    if (!key) panic("key is null");
    return delete_x(btree, DELKEY, 0, key, hint);
}

// btree_delete removes an item from the B-tree and returns it. If the item is
// not found then NULL is returned.
void *btree_delete(struct btree *btree, void *key) {
    return btree_delete_hint(btree, key, NULL);
}

// btree_pop_min removed the minimum value
void *btree_pop_min(struct btree *btree) {
    return delete_x(btree, POPFRONT, 0, NULL, NULL);
}

// btree_pop_max removes the maximum value
void *btree_pop_max(struct btree *btree) {
    return delete_x(btree, POPBACK, 0, NULL, NULL);
}

// btree_min returns the minimum value
void *btree_min(struct btree *btree) {
    struct node *node = btree->root;
    if (!node) {
        return NULL;
    }
    for (;;) {
        if (node->leaf) {
            return get_item_at(btree->elsize, node, 0);
        }
        node = node->children[0];
    }
}

// btree_max returns the maximum value
void *btree_max(struct btree *btree) {
    struct node *node = btree->root;
    if (!node) {
        return NULL;
    }    
    for (;;) {
        if (node->leaf) {
            return get_item_at(btree->elsize, node, 
                               (size_t)(node->num_items-1));
        }
        node = node->children[node->num_items];
    }
}


static bool node_scan(struct btree *btree, struct node *node, 
                      bool (*iter)(const void *item, void *udata), 
                      void *udata) 
{
    if (node->leaf) {
        for (int i = 0; i < node->num_items; i++) {
            if (!iter(get_item_at(btree->elsize, node, (size_t)i), udata)) {
                return false;
            }
        }
        return true;
    }
    for (int i = 0; i < node->num_items; i++) {
        if (!node_scan(btree, node->children[i], iter, udata)) {
            return false;
        }
        if (!iter(get_item_at(btree->elsize, node, (size_t)i), udata)) {
            return false;
        }
    }
    return node_scan(btree, node->children[node->num_items], iter, udata);
}

static bool node_ascend(struct btree *btree, struct node *node, void *pivot, 
                        bool (*iter)(const void *item, void *udata), 
                        void *udata, uint64_t *hint, int depth) 
{
    bool found;
    int i = node_find(btree, node, pivot, &found, hint, depth);
    if (!found) {
        if (!node->leaf) {
            if (!node_ascend(btree, node->children[i], pivot, iter, udata,
                             hint, depth+1)) 
            {
                return false;
            }
        }
    }
    for (; i < node->num_items; i++) {
        if (!iter(get_item_at(btree->elsize, node, (size_t)i), udata)) {
            return false;
        }
        if (!node->leaf) {
            if (!node_scan(btree, node->children[i+1], iter, udata)) {
                return false;
            }
        }
    }
    return true;
}

static bool node_reverse(struct btree *btree, struct node *node, 
                         bool (*iter)(const void *item, void *udata), 
                         void *udata) 
{
    if (node->leaf) {
		for (int i = node->num_items - 1; i >= 0; i--) {
			if (!iter(get_item_at(btree->elsize, node, (size_t)i), udata)) {
				return false;
			}
		}
		return true;
	}
	if (!node_reverse(btree, node->children[node->num_items], iter, udata)) {
		return false;
	}
	for (int i = node->num_items - 1; i >= 0; i--) {
		if (!iter(get_item_at(btree->elsize, node, (size_t)i), udata)) {
			return false;
		}
        if (!node_reverse(btree, node->children[i], iter, udata)) {
			return false;
		}
	}
	return true;
}

static bool node_descend(struct btree *btree, struct node *node, void *pivot, 
                        bool (*iter)(const void *item, void *udata), 
                        void *udata, uint64_t *hint, int depth) 
{
    bool found;
    int i = node_find(btree, node, pivot, &found, hint, depth);
    if (!found) {
        if (!node->leaf) {
            if (!node_descend(btree, node->children[i], pivot, iter, udata, 
                              hint, depth+1)) 
            {
                return false;
            }
        }
        i--;
    }
    for (; i >= 0; i--) {
        if (!iter(get_item_at(btree->elsize, node,(size_t)i), udata)) {
            return false;
        }
        if (!node->leaf) {
            if (!node_reverse(btree, node->children[i], iter, udata)) {
                return false;
            }
        }
    }
    return true;
}

// btree_ascend_hint is the same as btree_ascend except that an optional
// "hint" can be provided which may make the operation quicker when done as a
// batch or in a userspace context.
bool btree_ascend_hint(struct btree *btree, void *pivot, 
                       bool (*iter)(const void *item, void *udata), 
                       void *udata, uint64_t *hint) 
{
    if (btree->root) {
        if (!pivot) {
            return node_scan(btree, btree->root, iter, udata);
        }
        return node_ascend(btree, btree->root, pivot, iter, udata, hint, 0);
    }
    return true;
}

// Ascend the tree within the range [pivot, last]. In other words 
// `btree_ascend()` iterates over all items that are greater-than-or-equal-to
// pivot in ascending order.
// Param `pivot` can be NULL, which means all items are iterated over.
// Param `iter` can return false to stop iteration early.
// Returns false if the iteration has been stopped early.
bool btree_ascend(struct btree *btree, void *pivot, 
                  bool (*iter)(const void *item, void *udata), void *udata) 
{
    return btree_ascend_hint(btree, pivot, iter, udata, NULL);
}

// btree_descend_hint is the same as btree_descend except that an optional
// "hint" can be provided which may make the operation quicker when done as a
// batch or in a userspace context.
bool btree_descend_hint(struct btree *btree, void *pivot, 
                        bool (*iter)(const void *item, void *udata), 
                        void *udata, uint64_t *hint) 
{
    if (btree->root) {
        if (!pivot) {
            return node_reverse(btree, btree->root, iter, udata);
        }
        return node_descend(btree, btree->root, pivot, iter, udata, hint, 0);
    }
    return true;
}

// Decend the tree within the range [pivot, first]. In other words 
// `btree_descend()` iterates over all items that are less-than-or-equal-to
// pivot in descending order.
// Param `pivot` can be NULL, which means all items are iterated over.
// Param `iter` can return false to stop iteration early.
// Returns false if the iteration has been stopped early.
bool btree_descend(struct btree *btree, void *pivot, 
                   bool (*iter)(const void *item, void *udata), void *udata) 
{
    return btree_descend_hint(btree, pivot, iter, udata, NULL);
}

#define BTSTOP      0
#define BTCONTINUE  1
#define BTSTARTOVER 2

static int node_action_ascend(struct btree *btree, struct node *node, 
                              void **pivot,
                              enum btree_action (*iter)(void *item, 
                                                        void *udata),
                              void *udata, uint64_t *hint, int depth)
{
    bool found = false;
    int i = 0;
    if (*pivot) {
        i = node_find(btree, node, *pivot, &found, hint, depth);
    }
    for (; i < node->num_items; i++) {
        if (!node->leaf) {
            int ret = node_action_ascend(btree, node->children[i], pivot, iter, 
                                         udata, hint, depth+1);
            if (ret != BTCONTINUE) {
                return ret;
            }
        }
        copy_item_into(btree->elsize, node, (size_t)i, btree->spares[0]);
        switch (iter(btree->spares[0], udata)) {
        case BTREE_NONE:
            break;
        case BTREE_DELETE:
            if (node->leaf && (size_t)node->num_items > btree->min_items) {
                // delete in place
                node_shift_left(btree->elsize, node, (size_t)i, false);
                btree->count--;
                i--;
                break;
            } else {
                // rebalancing is required, go the slow route
                copy_item_into(btree->elsize, node, (size_t)i, btree->spares[1]);
                btree_delete(btree, btree->spares[1]);
                *pivot = btree->spares[1];
                return BTSTARTOVER;
            }
        case BTREE_UPDATE: {
            void *item = get_item_at(btree->elsize, node, (size_t)i);
            if (btcompare(btree, item, btree->spares[0])) {
                // Item keys have diverged. This is not fatal, but we need to
                // retry the operation until we get the response we're looking
                // for. There is a risk that a user, who does not understand
                // that the updated item must match exactly with the previous
                // item (ie "compare(a, b) == 0") , might create an infinite
                // loop like scenario.
                i--;
            } else {
                // Item keys match, update memory and move on.
                set_item_at(btree->elsize, node, (size_t)i, btree->spares[0]);
            }
            break;
        }
        case BTREE_STOP:
            return BTSTOP;
        }
    }
    if (!node->leaf) {
        int ret = node_action_ascend(btree, node->children[i], pivot, iter, 
                                     udata, hint, depth+1);
        if (ret != BTCONTINUE) {
            return ret;
        }
    }
    return BTCONTINUE;
}

static int node_action_descend(struct btree *btree, struct node *node, 
                               void **pivot,
                               enum btree_action (*iter)(void *item, 
                                                         void *udata),
                               void *udata, uint64_t *hint, int depth)
{
    bool found = false;
    int i = node->num_items;
    if (*pivot) {
        i = node_find(btree, node, *pivot, &found, hint, depth);
    }
    if (!node->leaf && !found) {
        int ret = node_action_descend(btree, node->children[i], pivot, iter,
                                        udata, hint, depth+1);
        if (ret != BTCONTINUE) {
            return ret;
        }
    }
    if (!found) {
        i--;
    }
    for (;i >= 0;i--) {
        copy_item_into(btree->elsize, node, (size_t)i, btree->spares[0]);
        switch (iter(btree->spares[0], udata)) {
        case BTREE_NONE:
            break;
        case BTREE_DELETE:
            if (node->leaf && (size_t)node->num_items > btree->min_items) {
                // delete in place
                node_shift_left(btree->elsize, node, (size_t)i, false);
                btree->count--;
                // i++;
                break;
            } else {
                // rebalancing is required, go the slow route
                copy_item_into(btree->elsize, node, (size_t)i, btree->spares[1]);
                btree_delete(btree, btree->spares[1]);
                *pivot = btree->spares[1];
                return BTSTARTOVER;
            }
        case BTREE_UPDATE: {
            void *item = get_item_at(btree->elsize, node, (size_t)i);
            if (btcompare(btree, item, btree->spares[0])) {
                // Item keys have diverged. This is not fatal, but we need to
                // retry the operation until we get the response we're looking
                // for. There is a risk that a user, who does not understand
                // that the updated item must match exactly with the previous
                // item (ie "compare(a, b) == 0") , might create an infinite
                // loop like scenario.
                i++;
            } else {
                // Item keys match, update memory and move on.
                set_item_at(btree->elsize, node, (size_t)i, btree->spares[0]);
            }
            break;
        }
        case BTREE_STOP:
            return BTSTOP;
        }
        if (!node->leaf) {
            int ret = node_action_descend(btree, node->children[i], pivot, iter, 
                                          udata, hint, depth+1);
            if (ret != BTCONTINUE) {
                return ret;
            }
        }
    }
    return BTCONTINUE;
}


// btree_action_ascend_hint is the same as btree_action_ascend but accepts
// and optional hint param.
void btree_action_ascend_hint(struct btree *btree, void *pivot,
                              enum btree_action (*iter)(void *item, 
                                                        void *udata),
                              void *udata, uint64_t *hint)
{
    reset_load_fields(btree);
    while (btree->root) {
        int ret = node_action_ascend(btree, btree->root, &pivot, iter, udata, 
                                     hint, 0);
        if (ret != BTSTARTOVER) {
            break; 
        }
    }
}

// btree_action_ascend allows for making changes to items in the tree while
// iterating. It work just like btree_ascend except that the iterator is 
// passed an item that can be optionally updated or deleted.
//
// To update an item, just make a change to the item and return BTREE_UPDATE. 
// It's very important to not change the key equivalency of the item. In other
// words the original item and the new item must compare to zero using the 
// comparator that was provided to btree_new(). Otherwise, the iterator will
// ignore the change and try the same item again.
//
// To delete an item, just return BTREE_DELETED. 
// Return BTREE_NOTHING to make no change to the item or return BTREE_STOP to
// stop iterating.
void btree_action_ascend(struct btree *btree, void *pivot,
                         enum btree_action (*iter)(void *item, void *udata),
                         void *udata)
{
    btree_action_ascend_hint(btree, pivot, iter, udata, NULL);
}

// btree_action_descend_hint is the same as btree_action_descend but accepts
// and optional hint param.
void btree_action_descend_hint(struct btree *btree, void *pivot,
                               enum btree_action (*iter)(void *item, 
                                                        void *udata),
                               void *udata, uint64_t *hint)
{
    reset_load_fields(btree);
    while (btree->root) {
        int ret = node_action_descend(btree, btree->root, &pivot, iter, udata, 
                                     hint, 0);
        if (ret != BTSTARTOVER) {
            break; 
        }
    }
}

// btree_action_descend allows for making changes to items in the tree while
// iterating. It work just like btree_descend except that the iterator is 
// passed an item that can be optionally updated or deleted.
//
// To update an item, just make a change to the item and return BTREE_UPDATE. 
// It's very important to not change the key equivalency of the item. In other
// words the original item and the new item must compare to zero using the 
// comparator that was provided to btree_new(). Otherwise, the iterator will
// ignore the change and try the same item again.
//
// To delete an item, just return BTREE_DELETED. 
// Return BTREE_NOTHING to make no change to the item or return BTREE_STOP to
// stop iterating.
void btree_action_descend(struct btree *btree, void *pivot,
                         enum btree_action (*iter)(void *item, void *udata),
                         void *udata)
{
    btree_action_descend_hint(btree, pivot, iter, udata, NULL);
}


////////////////////////////////////////////////////////////////////////////////

static void node_print(struct btree *btree, struct node *node, 
                       void (*print)(void *), int depth) 
{
    if (node->leaf) {
        for (int i = 0; i < depth; i++) {
            printf("  ");
        }
        printf("[");
        for (int i = 0; i < node->num_items; i++) {
            if (i > 0) {
                printf(" ");
            }
            print(get_item_at(btree->elsize, node, (size_t)i));
        }
        printf("]\n");
    } else {
        for (short i = 0; i < node->num_items; i++) {
            node_print(btree, node->children[i], print, depth+1);
            for (int j = 0; j < depth; j++) {
                printf("  ");
            }
            print(get_item_at(btree->elsize, node, (size_t)i));
            printf("\n");
        }
        node_print(btree, node->children[node->num_items], print, depth+1);
    }
}

void btree_print(struct btree *btree, void (*print)(void *item));
void btree_print(struct btree *btree, void (*print)(void *item)) {
    if (btree->root) {
        node_print(btree, btree->root, print, 0);
    }
}

// btree_oom returns true if the last btree_insert() call failed due to the 
// system being out of memory.
bool btree_oom(struct btree *btree) {
    return btree->oom;
}

//==============================================================================
// TESTS AND BENCHMARKS
// $ cc -DBTREE_TEST btree.c && ./a.out              # run tests
// $ cc -DBTREE_TEST -O3 btree.c && BENCH=1 ./a.out  # run benchmarks
//==============================================================================
#ifdef BTREE_TEST

// #ifdef __clang__
// #pragma clang diagnostic ignored "-Weverything"
// #endif
// #pragma GCC diagnostic ignored "-Wextra"


static void node_walk(struct btree *btree, struct node *node, 
                      void (*fn)(const void *item, void *udata), void *udata) 
{
    if (node->leaf) {
        for (int i = 0; i < node->num_items; i++) {
            fn(get_item_at(btree->elsize, node, i), udata);
        }
    } else {
        for (int i = 0; i < node->num_items; i++) {
            node_walk(btree, node->children[i], fn, udata);
            fn(get_item_at(btree->elsize, node, i), udata);
        }
        node_walk(btree, node->children[node->num_items], fn, udata);
    }
}

// btree_walk visits every item in the tree.
static void btree_walk(struct btree *btree, 
                void (*fn)(const void *item, void *udata), void *udata) 
{
    if (btree->root) {
        node_walk(btree, btree->root, fn, udata);
    }
}

static size_t node_deepcount(struct node *node) {
    size_t count = node->num_items;
    if (!node->leaf) {
        for (int i = 0; i <= node->num_items; i++) {
            count += node_deepcount(node->children[i]);
        }
    }
    return count;
}

// btree_deepcount returns the number of items in the btree.
static size_t btree_deepcount(struct btree *btree) {
    if (btree->root) {
        return node_deepcount(btree->root);
    }
    return 0;
}

static bool node_saneheight(struct node *node, int height, int maxheight) {
    if (node->leaf) {
        if (height != maxheight) {
            return false;
        }
    } else {
        int i = 0;
        for (; i < node->num_items; i++) {
            if (!node_saneheight(node->children[i], height+1, maxheight)) {
                return false;
            }
        }
        if (!node_saneheight(node->children[i], height+1, maxheight)) {
            return false;
        }
    }
    return true;
}

// btree_saneheight returns true if the height of all leaves match the height
// of the btree.
static bool btree_saneheight(struct btree *btree) {
    if (btree->root) {
        return node_saneheight(btree->root, 1, btree->height);        
    }
    return true;
}

static bool node_saneprops(struct btree *btree, struct node *node, int height) {
    if (height == 1) {
        if (node->num_items < 1 || node->num_items > btree->max_items) {
            return false;
        }
    } else {
        if (node->num_items < btree->min_items || 
            node->num_items > btree->max_items) 
        {
            return false;
        }
    }
    if (!node->leaf) {
        for (int i = 0; i < node->num_items; i++) {
            if (!node_saneprops(btree, node->children[i], height+1)) {
                return false;
            }
        }
        if (!node_saneprops(btree, node->children[node->num_items], height+1)) {
            return false;
        }
    }
    return true;
}


static bool btree_saneprops(struct btree *btree) {
    if (btree->root) {
        return node_saneprops(btree, btree->root, 1);
    }
    return true;
}

struct sane_walk_ctx {
    struct btree *btree;
    const void *last;
    size_t count;
    bool bad;
};

static void sane_walk(const void *item, void *udata) {
    struct sane_walk_ctx *ctx = udata;
    if (ctx->bad) {
        return;
    }
    if (ctx->last != NULL) {
        if (btcompare(ctx->btree, ctx->last, item) >= 0) {
            ctx->bad = true;
            return;
        }
    }
    ctx->last = item;
    ctx->count++;
}

// btree_sane returns true if the entire btree and every node are valid.
// - height of all leaves are the equal to the btree height.
// - deep count matches the btree count.
// - all nodes have the correct number of items and counts.
// - all items are in order.
bool btree_sane(struct btree *btree) {
    if (!btree_saneheight(btree)) {
        fprintf(stderr, "!sane-height\n");
        return false;
    }
    if (btree_deepcount(btree) != btree->count) {
        fprintf(stderr, "!sane-count\n");
        return false;
    }
    if (!btree_saneprops(btree)) {
        fprintf(stderr, "!sane-props\n");
        return false;
    }
    struct sane_walk_ctx ctx = { .btree = btree };
    btree_walk(btree, sane_walk, &ctx);
    if (ctx.bad || (ctx.count != btree->count)) {
        fprintf(stderr, "!sane-order\n");
        return false;
    }
    return true;
}

struct slowget_at_ctx {
    struct btree *btree;
    int index;
    int count;
    void *result;
};

static bool slowget_at_iter(const void *item, void *udata) {
    struct slowget_at_ctx *ctx = udata;
    if (ctx->count == ctx->index) {
        ctx->result = (void*)item;
        return false;
    }
    ctx->count++;
    return true;
}

void *btree_slowget_at(struct btree *btree, size_t index);
void *btree_slowget_at(struct btree *btree, size_t index) {
    struct slowget_at_ctx ctx = { .btree = btree, .index = index };
    btree_ascend(btree, NULL, slowget_at_iter, &ctx);
    return ctx.result;
}


void print_int(void *item) {
    printf("%d", *(int*)item);
}

#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <assert.h>
#include <stdio.h>
#include "btree.h"

static bool rand_alloc_fail = false;
static int rand_alloc_fail_odds = 3; // 1 in 3 chance malloc will fail.
static uintptr_t total_allocs = 0;
static uintptr_t total_mem = 0;

static void *xmalloc(size_t size) {
    if (rand_alloc_fail && rand()%rand_alloc_fail_odds == 0) {
        return NULL;
    }
    void *mem = malloc(sizeof(uintptr_t)+size);
    assert(mem);
    *(uintptr_t*)mem = size;
    total_allocs++;
    total_mem += size;
    return (char*)mem+sizeof(uintptr_t);
}

static void xfree(void *ptr) {
    if (ptr) {
        total_mem -= *(uintptr_t*)((char*)ptr-sizeof(uintptr_t));
        free((char*)ptr-sizeof(uintptr_t));
        total_allocs--;
    }
}

static void shuffle(void *array, size_t numels, size_t elsize) {
    char tmp[elsize];
    char *arr = array;
    for (size_t i = 0; i < numels - 1; i++) {
        int j = i + rand() / (RAND_MAX / (numels - i) + 1);
        memcpy(tmp, arr + j * elsize, elsize);
        memcpy(arr + j * elsize, arr + i * elsize, elsize);
        memcpy(arr + i * elsize, tmp, elsize);
    }
}

static char nothing[] = "nothing";

static int compare_ints_nudata(const void *a, const void *b) {
    return *(int*)a - *(int*)b;
}
static int compare_ints(const void *a, const void *b, void *udata) {
    assert(udata == nothing);
    return *(int*)a - *(int*)b;
}

struct iter_ctx {
    bool rev;
    struct btree *btree;
    const void *last;
    int count;
    bool bad;
};

static bool iter(const void *item, void *udata) {
    struct iter_ctx *ctx = udata;
    if (ctx->bad) {
        return false;
    }
    if (ctx->last) {
        if (ctx->rev) {
            if (btcompare(ctx->btree, item, ctx->last) >= 0) {
                ctx->bad = true;
                return false;
            }
        } else {
            if (btcompare(ctx->btree, ctx->last, item) >= 0) {
                ctx->bad = true;
                return false;
            }
        }
    }
    ctx->last = item;
    ctx->count++;
    return true;
}

struct pair {
    int key;
    int val;
};

static int compare_pairs_nudata(const void *a, const void *b) {
    return ((struct pair*)a)->key - ((struct pair*)b)->key;
}

static int compare_pairs(const void *a, const void *b, void *udata) {
    assert(udata == nothing);
    return ((struct pair*)a)->key - ((struct pair*)b)->key;
}

struct pair_keep_ctx {
    struct pair last;
    int count;
};

enum btree_action pair_keep(void *item, void *udata) {
    struct pair_keep_ctx *ctx = udata;
    if (ctx->count > 0) {
        assert(compare_pairs_nudata(item, &ctx->last) > 0);
    }
    memcpy(&ctx->last, item, sizeof(struct pair));
    ctx->count++;
    return BTREE_NONE;
}

enum btree_action pair_keep_desc(void *item, void *udata) {
    struct pair_keep_ctx *ctx = udata;
    // struct pair *pair = (struct pair *)item;
    // if (ctx->count == 0) {
    //     printf("((%d))\n", pair->key);
    // }
    
    if (ctx->count > 0) {
        assert(compare_pairs_nudata(item, &ctx->last) < 0);
    }
    memcpy(&ctx->last, item, sizeof(struct pair));
    ctx->count++;
    return BTREE_NONE;
}


enum btree_action pair_update(void *item, void *udata) {
    ((struct pair*)item)->val++;
    return BTREE_UPDATE;
}

bool pair_update_check(const void *item, void *udata) {
    int half = *(int*)udata;
    struct pair *pair = (struct pair *)item;
    if (pair->key < half) {
        assert(pair->val == pair->key + 1);
    } else {
        assert(pair->val == pair->key + 2);
    }
    return true;
}

bool pair_update_check_desc(const void *item, void *udata) {
    int half = *(int*)udata;
    struct pair *pair = (struct pair *)item;
    if (pair->key > half) {
        assert(pair->val == pair->key + 1);
    } else {
        assert(pair->val == pair->key + 2);
    }
    return true;
}

enum btree_action pair_delete(void *item, void *udata) {
    return BTREE_DELETE;
}


enum btree_action pair_cycle(void *item, void *udata) {
    int i = *(int*)udata;
    *(int*)udata = i+1;
    switch (i % 3) {
    case 0:
        return BTREE_NONE;
    case 1:
        ((struct pair*)item)->val++;
        return BTREE_UPDATE;
    case 2:
        return BTREE_DELETE;
    }
    panic("!");
}

const int def_MAX_ITEMS = 6;
const int def_N = 5000;


static void test_action_ascend() {
    int max_items = getenv("MAX_ITEMS")?atoi(getenv("MAX_ITEMS")):def_MAX_ITEMS;
    int N = getenv("N")?atoi(getenv("N")):def_N;
    
    rand_alloc_fail = false;
    assert(total_allocs == 0);

    struct pair *pairs = xmalloc(sizeof(struct pair) * N);
    for (int i = 0; i < N; i++) {
        pairs[i].key = i;
        pairs[i].val = i;
    }

    // qsort(pairs, N, sizeof(struct pair), compare_pairs_nudata);
    
    struct btree *btree = btree_new(sizeof(struct pair), max_items, 
                                    compare_pairs, nothing);

    printf("== testing action ascend\n");
    shuffle(pairs, N, sizeof(struct pair));
    for (int i = 0; i < N; i++) {
        btree_set(btree, &pairs[i]);
    }
    // test that all items exist and are in order, BTREE_NONE
    struct pair_keep_ctx ctx = { 0 };
    btree_action_ascend(btree, NULL, pair_keep, &ctx);
    assert(ctx.count == N);
    assert(btree_sane(btree));

    // test items exist at various pivot points and are in order, BTREE_NONE
    qsort(pairs, N, sizeof(struct pair), compare_pairs_nudata);
    for (int i = 2 ; i < 16; i++) {
        memset(&ctx, 0, sizeof(struct pair_keep_ctx));
        btree_action_ascend(btree, &pairs[N/i], pair_keep, &ctx);
        assert(ctx.count == N-N/i);
        assert(btree_sane(btree));
    }

    // update all item values, BTREE_UPDATE
    btree_action_ascend(btree, NULL, pair_update, NULL);
    btree_action_ascend(btree, &pairs[N/2], pair_update, NULL);
    int half = N/2;
    btree_ascend(btree, NULL, pair_update_check, &half);
    assert(btree_sane(btree));

    // delete all items, BTREE_DELETE
    btree_action_ascend(btree, NULL, pair_delete, NULL);
    assert(btree_count(btree) == 0);
    assert(btree_sane(btree));

    // delete items at various pivot points, BTREE_DELETE
    for (int i = 2 ; i < 16; i++) {
        qsort(pairs, N, sizeof(struct pair), compare_pairs_nudata);
        for (int i = 0; i < N; i++) {
            btree_set(btree, &pairs[i]);
        }
        assert(btree_count(btree) == N);
        btree_action_ascend(btree, &pairs[N/i], pair_delete, NULL);
        assert(btree_count(btree) == N/i);
        assert(btree_sane(btree));
    }


    qsort(pairs, N, sizeof(struct pair), compare_pairs_nudata);
    for (int i = 0; i < N; i++) {
        btree_set(btree, &pairs[i]);
    }

    // cycle the BTREE_NONE, BTREE_UPDATE, BTREE_DELETE
    int cycle = 0;
    btree_action_ascend(btree, NULL, pair_cycle, &cycle);
    assert(btree_count(btree) == N-N/3);
    assert(btree_sane(btree));
    for (int i = 0; i < N; i++) {
        struct pair *pair = btree_get(btree, &pairs[i]);
        switch (i % 3) {
        case 0:
            assert(pair && pair->key == pair->val);
            break;
        case 1:
            assert(pair && pair->key == pair->val-1);
            break;
        case 2:
            assert(!pair);
            break;            
        }
    }

    printf("== testing action descend\n");
    // do the same stuff as the ascend test, but in reverse
    qsort(pairs, N, sizeof(struct pair), compare_pairs_nudata);
    for (int i = 0; i < N; i++) {
        btree_set(btree, &pairs[i]);
    }

    // test that all items exist and are in order, BTREE_NONE
    memset(&ctx, 0, sizeof(struct pair_keep_ctx));
    // printf(">>%d<<\n", pairs[N/2].key);
    btree_action_descend(btree, NULL, pair_keep_desc, &ctx);
    assert(ctx.count == N);
    assert(btree_sane(btree));

    // test items exist at various pivot points and are in order, BTREE_NONE
    qsort(pairs, N, sizeof(struct pair), compare_pairs_nudata);
    for (int i = 2 ; i < 16; i++) {
        memset(&ctx, 0, sizeof(struct pair_keep_ctx));
        btree_action_descend(btree, &pairs[N/i], pair_keep_desc, &ctx);
        assert(ctx.count == N/i+1);
        assert(btree_sane(btree));
    }

    // update all item values, BTREE_UPDATE
    btree_action_descend(btree, NULL, pair_update, NULL);
    btree_action_descend(btree, &pairs[N/2], pair_update, NULL);
    half = N/2;
    btree_descend(btree, NULL, pair_update_check_desc, &half);
    assert(btree_sane(btree));

    // delete all items, BTREE_DELETE
    btree_action_descend(btree, NULL, pair_delete, NULL);
    assert(btree_count(btree) == 0);
    assert(btree_sane(btree));

    // delete items at various pivot points, BTREE_DELETE
    for (int i = 2 ; i < 16; i++) {
        qsort(pairs, N, sizeof(struct pair), compare_pairs_nudata);
        for (int i = 0; i < N; i++) {
            btree_set(btree, &pairs[i]);
        }
        assert(btree_count(btree) == N);
        btree_action_descend(btree, &pairs[N/i], pair_delete, NULL);
        assert(btree_count(btree) == N-(N/i+1));
        assert(btree_sane(btree));
    }

    qsort(pairs, N, sizeof(struct pair), compare_pairs_nudata);
    for (int i = 0; i < N; i++) {
        btree_set(btree, &pairs[i]);
    }

    // cycle the BTREE_NONE, BTREE_UPDATE, BTREE_DELETE
    cycle = 0;
    btree_action_descend(btree, NULL, pair_cycle, &cycle);
    assert(btree_count(btree) == N-N/3);
    assert(btree_sane(btree));
    for (int i = N-1, j = 0; i >= 0; i--, j++) {
        struct pair *pair = btree_get(btree, &pairs[i]);
        switch (j % 3) {
        case 0:
            assert(pair && pair->key == pair->val);
            break;
        case 1:
            assert(pair && pair->key == pair->val-1);
            break;
        case 2:
            assert(!pair);
            break;            
        }
    }

    xfree(pairs);
    btree_free(btree);

    if (total_allocs != 0) {
        fprintf(stderr, "total_allocs: expected 0, got %lu\n", total_allocs);
        exit(1);
    }
}

static void test_basic() {
    int seed = getenv("SEED")?atoi(getenv("SEED")):time(NULL);
    int max_items = getenv("MAX_ITEMS")?atoi(getenv("MAX_ITEMS")):def_MAX_ITEMS;
    int N = getenv("N")?atoi(getenv("N")):def_N;
    printf("seed=%d, max_items=%d, count=%d, item_size=%zu\n", 
        seed, max_items, N, sizeof(int));
    srand(seed);

    assert(total_allocs == 0);
    rand_alloc_fail = true;


    printf("== testing basic operations\n");

    int *vals;
    while(!(vals = xmalloc(sizeof(int) * N))){}

    for (int i = 0; i < N; i++) {
        vals[i] = i*10;
    }
    
    struct btree *btree = NULL;
    for (int h = 0; h < 2; h++) {
        if (btree) btree_free(btree);
        while (!(btree = btree_new(sizeof(int), max_items, compare_ints, 
                                   nothing))){}

        shuffle(vals, N, sizeof(int));
        uint64_t hint = 0;
        uint64_t *hint_ptr = h == 0 ? NULL : &hint;
        
        for (int i = 0; i < N; i++) {
            int *v;
            v = btree_get_hint(btree, &vals[i], hint_ptr);
            assert(!v);
            while (true) {
                v = btree_set_hint(btree, &vals[i], hint_ptr);
                assert(!v);
                if (!btree_oom(btree)) {
                    break;
                }
            }
            while (true) {
                v = btree_set_hint(btree, &vals[i], hint_ptr);
                if (!v) {
                    assert(btree_oom(btree));
                } else {
                    assert(v && *(int*)v == vals[i]);
                    break;
                }
            }
            v = btree_get_hint(btree, &vals[i], hint_ptr);
            assert(v && *(int*)v == vals[i]);
            assert(btree_count(btree) == (size_t)(i+1));
            assert(btree_sane(btree));

            // delete item
            v = btree_delete_hint(btree, &vals[i], hint_ptr);
            assert(v && *v == vals[i]);
            assert(btree_count(btree) == (size_t)(i));
            assert(btree_sane(btree));

            v = btree_get_hint(btree, &vals[i], hint_ptr);
            assert(!v);

            // reinsert item
            v = btree_set_hint(btree, &vals[i], hint_ptr);
            assert(!v);
            assert(btree_count(btree) == (size_t)(i+1));
            assert(btree_sane(btree));

            v = btree_get_hint(btree, &vals[i], hint_ptr);
            assert(v && *(int*)v == vals[i]);
        }
    }
    
    printf("== testing ascend\n");
    {  
        // ascend
        struct iter_ctx ctx = { .btree = btree, .rev = false };
        bool ret = btree_ascend(btree, NULL, iter, &ctx);
        assert(ret && !ctx.bad && ctx.count == N);

        for (int i = 0; i < N; i++) {
            struct iter_ctx ctx = { .btree = btree, .rev = false };
            bool ret = btree_ascend(btree, &(int){i*10}, iter, &ctx);
            assert(ret && !ctx.bad && ctx.count == N-i);
        }

        for (int i = 0; i < N; i++) {
            struct iter_ctx ctx = { .btree = btree, .rev = false };
            bool ret = btree_ascend(btree, &(int){i*10-1}, iter, &ctx);
            assert(ret && !ctx.bad && ctx.count == N-i);
        }

        for (int i = 0; i < N; i++) {
            struct iter_ctx ctx = { .btree = btree, .rev = false };
            bool ret = btree_ascend(btree, &(int){i*10+1}, iter, &ctx);
            assert(ret && !ctx.bad && ctx.count == N-i-1);
        }
    }

    printf("== testing descend\n");
    {  
        // decend
        struct iter_ctx ctx = { .btree = btree, .rev = true };
        bool ret = btree_descend(btree, NULL, iter, &ctx);
        assert(ret && !ctx.bad && ctx.count == N);

        for (int i = N-1, j = 0; i >= 0; i--, j++) {
            struct iter_ctx ctx = { .btree = btree, .rev = true };
            bool ret = btree_descend(btree, &(int){i*10}, iter, &ctx);
            assert(ret && !ctx.bad && ctx.count == N-(N-i)+1);
        }

        for (int i = N-1; i >= 0; i--) {
            struct iter_ctx ctx = { .btree = btree, .rev = true };
            bool ret = btree_descend(btree, &(int){i*10+1}, iter, &ctx);
            assert(ret && !ctx.bad && ctx.count == N-(N-i)+1);
        }

        for (int i = N-1; i >= 0; i--) {
            struct iter_ctx ctx = { .btree = btree, .rev = true };
            bool ret = btree_descend(btree, &(int){i*10-1}, iter, &ctx);
            assert(ret && !ctx.bad && ctx.count == N-(N-i));
        }
    }



    // delete all items
    shuffle(vals, N, sizeof(int));
    for (int i = 0; i < N; i++) {
        int *v = btree_delete(btree, &vals[i]);
        assert(v && *(int*)v == vals[i]);
        assert(btree_sane(btree));
    }

    printf("== testing pop-min\n");

    // reinsert
    shuffle(vals, N, sizeof(int));
    int min, max;
    for (int i = 0; i < N; i++) {
        int *v;
        while (true) {
            v = btree_set(btree, &vals[i]);
            assert(!v);
            if (!btree_oom(btree)) {
                break;
            }
        }
        if (i == 0) {
            min = vals[i], max = vals[i];
        } else {
            if (vals[i] < min) {
                min = vals[i];
            } else if (vals[i] > max) {
                max = vals[i];
            }
        }
        assert(btree_sane(btree));
        v = btree_min(btree);
        assert(v && *(int*)v == min);
        v = btree_max(btree);
        assert(v && *(int*)v == max);
    }

    // pop-min
    for (int i = 0; i < N; i++) {
        int *v = btree_pop_min(btree);
        assert(v && *(int*)v == i*10);
        assert(btree_sane(btree));
    }

    printf("== testing pop-max\n");
    // reinsert
    shuffle(vals, N, sizeof(int));
    for (int i = 0; i < N; i++) {
        while (true) {
            assert(!btree_set(btree, &vals[i]));
            if (!btree_oom(btree)) {
                break;
            }
        }
    }

    // pop-max
    for (int i = 0; i < N; i++) {
        int *v = btree_pop_max(btree);
        assert(v && *(int*)v == (N-i-1)*10);
        assert(btree_sane(btree));
    }

    btree_free(btree);
    xfree(vals);

    if (total_allocs != 0) {
        fprintf(stderr, "total_allocs: expected 0, got %lu\n", total_allocs);
        exit(1);
    }
}

#define bench(name, N, code) {{ \
    if (strlen(name) > 0) { \
        printf("%-14s ", name); \
    } \
    size_t tmem = total_mem; \
    size_t tallocs = total_allocs; \
    uint64_t bytes = 0; \
    clock_t begin = clock(); \
    for (int i = 0; i < N; i++) { \
        (code); \
    } \
    clock_t end = clock(); \
    double elapsed_secs = (double)(end - begin) / CLOCKS_PER_SEC; \
    double bytes_sec = (double)bytes/elapsed_secs; \
    double ns_op = elapsed_secs/(double)N*1e9; \
    if (ns_op < 10) { \
        printf("%d ops in %.3f secs, %.1f ns/op, %.0f op/sec", \
            N, elapsed_secs, ns_op, (double)N/elapsed_secs \
        ); \
    } else { \
        printf("%d ops in %.3f secs, %.0f ns/op, %.0f op/sec", \
            N, elapsed_secs, ns_op, (double)N/elapsed_secs \
        ); \
    } \
    if (bytes > 0) { \
        printf(", %.1f GB/sec", bytes_sec/1024/1024/1024); \
    } \
    if (total_mem > tmem) { \
        size_t used_mem = total_mem-tmem; \
        printf(", %.2f bytes/op", (double)used_mem/N); \
    } \
    if (total_allocs > tallocs) { \
        size_t used_allocs = total_allocs-tallocs; \
        printf(", %.2f allocs/op", (double)used_allocs/N); \
    } \
    printf("\n"); \
}}

bool simple_iter(const void *item, void *udata) {
    return true;
}

enum btree_action del_asc_odds(void *item, void *udata) {
    int count = *(int*)udata;
    count++;
    *(int*)udata = count;
    if ((count & 1) == 1) {
        return BTREE_DELETE;
    } else {
        return BTREE_NONE;
    }
}

static void benchmarks() {
    int seed = getenv("SEED")?atoi(getenv("SEED")):time(NULL);
    int max_items = getenv("MAX_ITEMS")?atoi(getenv("MAX_ITEMS")):256;
    int N = getenv("N")?atoi(getenv("N")):1000000;
    printf("seed=%d, max_items=%d, count=%d, item_size=%zu\n", 
        seed, max_items, N, sizeof(int));
    srand(seed);


    int *vals = xmalloc(N * sizeof(int));
    for (int i = 0; i < N; i++) {
        vals[i] = i;
    }

    shuffle(vals, N, sizeof(int));

    struct btree *btree;
    uint64_t hint = 0;

    btree = btree_new(sizeof(int), max_items, compare_ints, nothing);
    qsort(vals, N, sizeof(int), compare_ints_nudata);
    bench("load (seq)", N, {
        btree_load(btree, &vals[i]);
    })
    btree_free(btree);

    shuffle(vals, N, sizeof(int));
    btree = btree_new(sizeof(int), max_items, compare_ints, nothing);
    bench("load (rand)", N, {
        btree_set_hint(btree, &vals[i], &hint);
    })
    btree_free(btree);


    btree = btree_new(sizeof(int), max_items, compare_ints, nothing);
    qsort(vals, N, sizeof(int), compare_ints_nudata);
    bench("set (seq)", N, {
        btree_set(btree, &vals[i]);
    })
    btree_free(btree);

    ////
    qsort(vals, N, sizeof(int), compare_ints_nudata);
    btree = btree_new(sizeof(int), max_items, compare_ints, nothing);
    bench("set (seq-hint)", N, {
        btree_set_hint(btree, &vals[i], &hint);
    })
    btree_free(btree);

    ////
    shuffle(vals, N, sizeof(int));
    btree = btree_new(sizeof(int), max_items, compare_ints, nothing);
    bench("set (rand)", N, {
        btree_set(btree, &vals[i]);
    })
    

    qsort(vals, N, sizeof(int), compare_ints_nudata);
    bench("get (seq)", N, {
        btree_get(btree, &vals[i]);
    })

    bench("get (seq-hint)", N, {
        btree_get_hint(btree, &vals[i], &hint);
    })

    shuffle(vals, N, sizeof(int));
    bench("get (rand)", N, {
        btree_get(btree, &vals[i]);
    })


    shuffle(vals, N, sizeof(int));
    bench("delete (rand)", N, {
        btree_delete(btree, &vals[i]);
    })
    shuffle(vals, N, sizeof(int));
    for (int i = 0; i < N; i++) {
        btree_set(btree, &vals[i]);
    }

    bench("min", N, {
        assert(btree_min(btree));
    })

    bench("max", N, {
        assert(btree_max(btree));
    })

    bench("ascend", N, {
        btree_ascend(btree, NULL, simple_iter, NULL);
        break;
    })

    bench("descend", N, {
        btree_descend(btree, NULL, simple_iter, NULL);
        break;
    })

    bench("pop-min", N, {
        btree_pop_min(btree);
    })

    // -- pop last items from tree -- 
    // reinsert
    shuffle(vals, N, sizeof(int));
    for (int i = 0; i < N; i++) {
        btree_set(btree, &vals[i]);
    }
    bench("pop-max", N, {
        btree_pop_max(btree);
    })

    // -- delete all odd value items from the tree -- 
    // reinsert
    shuffle(vals, N, sizeof(int));
    for (int i = 0; i < N; i++) {
        btree_set(btree, &vals[i]);
    }
    qsort(vals, N, sizeof(int), compare_ints_nudata);
    int count = 0;
    bench("asc-del-odds", N, {
        btree_action_ascend(btree, NULL, del_asc_odds, &count);
        break;
    });

    // reinsert
    for (int i = 0; i < N; i++) {
        btree_set(btree, &vals[i]);
    }
    count = 0;
    bench("desc-del-odds", N, {
        btree_action_descend(btree, NULL, del_asc_odds, &count);
        break;
    });

    

    btree_free(btree);
    xfree(vals);
}



int main() {
    btree_set_allocator(xmalloc, xfree);

    if (getenv("BENCH")) {
        printf("Running btree.c benchmarks...\n");
        benchmarks();
    } else {
        printf("Running btree.c tests...\n");
        test_basic();
        test_action_ascend();
        printf("PASSED\n");
    }
}

#endif