1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
/*
* Copyright (C) 2021-2022 taylor.fish <contact@taylor.fish>
*
* This file is part of btree-vec.
*
* btree-vec is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* btree-vec is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with btree-vec. If not, see <https://www.gnu.org/licenses/>.
*/
#![cfg_attr(not(all(test, btree_vec_debug)), no_std)]
#![cfg_attr(
any(feature = "allocator_api", has_allocator_api),
feature(allocator_api)
)]
#![cfg_attr(feature = "dropck_eyepatch", feature(dropck_eyepatch))]
#![deny(unsafe_op_in_unsafe_fn)]
//! This crate provides a growable array (vector) implemented using a B-tree
//! (more specifically, a B+ tree). It provides non-amortized O(log n) random
//! accesses, insertions, and removals, as well as O(n) iteration. The
//! branching factor is also customizable.
//!
//! The design is similar to [unsorted counted B-trees][cb] as described by
//! Simon Tatham.
//!
//! [cb]: https://www.chiark.greenend.org.uk/~sgtatham/algorithms/cbtree.html
//!
//! For now, the vector supports insertions and removals only of single
//! elements, but bulk operations, including implementations of [`Extend`]
//! and [`FromIterator`], may be added in the future.
//!
//! Example
//! -------
//!
//! ```rust
//! # use btree_vec::BTreeVec;
//! let mut vec = BTreeVec::new();
//! for i in 0..20 {
//! vec.push(i);
//! }
//! for i in 0..10 {
//! assert!(vec.remove(i) == i * 2);
//! }
//! for i in 0..10 {
//! assert!(vec[i] == i * 2 + 1);
//! }
//! for i in 0..10 {
//! vec.insert(i * 2, i * 2);
//! }
//! assert!(vec.len() == 20);
//! for (i, n) in vec.iter().copied().enumerate() {
//! assert!(i == n);
//! }
//! ```
//!
//! Crate features
//! --------------
//!
//! If the crate feature `dropck_eyepatch` is enabled, items in a [`BTreeVec`]
//! can contain references with the same life as the vector itself. This
//! requires Rust nightly, as the unstable language feature [`dropck_eyepatch`]
//! must be used.
//!
//! If the crate feature `allocator_api` is enabled, you can configure
//! [`BTreeVec`] with the unstable [`Allocator`] trait. Alternatively, if the
//! feature `allocator-fallback` is enabled, this crate will use the allocator
//! API provided by [allocator-fallback] instead of the standard library’s.
//!
//! [`dropck_eyepatch`]: https://github.com/rust-lang/rust/issues/34761
//! [allocator-fallback]: https://docs.rs/allocator-fallback
//!
//! [`Extend`]: core::iter::Extend
//! [`FromIterator`]: core::iter::FromIterator
//! [`Allocator`]: alloc::alloc::Allocator
extern crate alloc;
#[cfg(feature = "allocator_api")]
use alloc::alloc as allocator;
#[cfg(not(feature = "allocator_api"))]
#[cfg(feature = "allocator-fallback")]
use allocator_fallback as allocator;
#[cfg(not(any_allocator_api))]
#[path = "alloc_fallback.rs"]
mod allocator;
use alloc::boxed::Box;
use allocator::{Allocator, Global};
use core::fmt::{self, Debug, Formatter};
use core::iter::FusedIterator;
use core::marker::PhantomData;
use core::ops::{Index, IndexMut};
use core::ptr::NonNull;
#[cfg(btree_vec_debug)]
#[allow(dead_code)]
pub mod debug;
mod insert;
mod node;
mod remove;
#[cfg(test)]
mod tests;
mod verified_alloc;
use insert::{insert, ItemInsertion};
use node::{LeafRef, Mutable, Node, NodeRef};
use node::{PrefixCast, PrefixPtr, PrefixRef};
use remove::remove;
use verified_alloc::VerifiedAlloc;
/// A growable array (vector) implemented as a B+ tree.
///
/// Provides non-amortized O(log n) random accesses, insertions, and removals,
/// and O(n) iteration.
///
/// `B` is the branching factor. It must be at least 3. The standard library
/// uses a value of 6 for its B-tree structures. Larger values are better when
/// `T` is smaller.
pub struct BTreeVec<T, const B: usize = 12, A: Allocator = Global> {
root: Option<PrefixPtr<T, B>>,
size: usize,
alloc: VerifiedAlloc<A>,
/// Lets dropck know that `T` may be dropped.
phantom: PhantomData<Box<T>>,
}
// SAFETY: `BTreeVec` owns its data, so it can be sent to another thread.
unsafe impl<T, const B: usize, A> Send for BTreeVec<T, B, A>
where
T: Send,
A: Allocator,
{
}
// SAFETY: `BTreeVec` owns its data and provides access to it only through
// standard borrows.
unsafe impl<T, const B: usize, A> Sync for BTreeVec<T, B, A>
where
T: Sync,
A: Allocator,
{
}
fn leaf_for<T, const B: usize, R>(
mut root: PrefixRef<T, B, R>,
mut index: usize,
) -> (LeafRef<T, B, R>, usize) {
loop {
let node = match root.cast() {
PrefixCast::Leaf(node) => return (node, index),
PrefixCast::Internal(node) => node,
};
let last = node.length() - 1;
let index = node
.sizes
.iter()
.copied()
.take(last)
.position(|size| {
if let Some(n) = index.checked_sub(size) {
index = n;
false
} else {
true
}
})
.unwrap_or(last);
root = node.into_child(index);
}
}
impl<T> BTreeVec<T> {
/// Creates a new [`BTreeVec`]. Note that this function is implemented
/// only for the default value of `B`; see [`Self::create`] for an
/// equivalent that works with all values of `B`.
pub fn new() -> Self {
Self::create()
}
}
impl<T, A: Allocator> BTreeVec<T, 12, A> {
#[cfg_attr(
not(any(feature = "allocator_api", feature = "allocator-fallback")),
doc(hidden)
)]
/// Creates a new [`BTreeVec`] with the given allocator. Note that this
/// function is implemented only for the default value of `B`; see
/// [`Self::create_in`] for an equivalent that works with all values of
/// `B`.
pub fn new_in(alloc: A) -> Self {
Self::create_in(alloc)
}
}
impl<T, const B: usize> BTreeVec<T, B> {
/// Creates a new [`BTreeVec`]. This function exists because
/// [`BTreeVec::new`] is implemented only for the default value of `B`.
pub fn create() -> Self {
Self::create_in(Global)
}
}
impl<T, const B: usize, A: Allocator> BTreeVec<T, B, A> {
#[cfg_attr(
not(any(feature = "allocator_api", feature = "allocator-fallback")),
doc(hidden)
)]
/// Creates a new [`BTreeVec`] with the given allocator. This function
/// exists because [`BTreeVec::new_in`] is implemented only for the default
/// value of `B`.
pub fn create_in(alloc: A) -> Self {
assert!(B >= 3);
// SAFETY:
//
// * All nodes are allocated by `alloc`, either via the calls to
// `insert` and `LeafRef::alloc` in `Self::insert`. Nodes are
// deallocated in two places: via the call to `remove` in
// `Self::remove`, and via the call to `NodeRef::destroy` in
// `Self::drop`. In both of these cases, `alloc` is provided as the
// allocator with which to deallocate the nodes.
//
// * When `alloc` (`Self.alloc`) is dropped, `Self::drop` will have
// run, which destroys all nodes. If `alloc`'s memory is reused
// (e.g., via `mem::forget`), the only way this can happen is if the
// operation that made its memory able to be reused applied to the
// entire `BTreeVec`. Thus, all allocated nodes will become
// inaccessible as they are not exposed via any public APIs,
// guaranteeing that they will never be accessed.
let alloc = unsafe { VerifiedAlloc::new(alloc) };
Self {
root: None,
size: 0,
alloc,
phantom: PhantomData,
}
}
/// # Safety
///
/// * There must not be any mutable references, including other
/// [`NodeRef`]s where `R` is [`Mutable`], to any data accessible via the
/// returned [`NodeRef`].
///
/// [`Mutable`]: node::Mutable
unsafe fn leaf_for(&self, index: usize) -> (LeafRef<T, B>, usize) {
// SAFETY: Caller guarantees safety.
leaf_for(unsafe { NodeRef::new(self.root.unwrap()) }, index)
}
/// # Safety
///
/// There must be no other references, including [`NodeRef`]s, to any data
/// accessible via the returned [`NodeRef`].
unsafe fn leaf_for_mut(
&mut self,
index: usize,
) -> (LeafRef<T, B, Mutable>, usize) {
// SAFETY: Caller guarantees safety.
leaf_for(unsafe { NodeRef::new_mutable(self.root.unwrap()) }, index)
}
/// Gets the length of the vector.
pub fn len(&self) -> usize {
self.size
}
/// Checks whether the vector is empty.
pub fn is_empty(&self) -> bool {
self.size == 0
}
/// Gets the item at `index`, or [`None`] if no such item exists.
pub fn get(&self, index: usize) -> Option<&T> {
(index < self.size).then(|| {
// SAFETY: `BTreeVec` uses `NodeRef`s in accordance with
// standard borrowing rules, so there are no existing mutable
// references.
let (leaf, index) = unsafe { self.leaf_for(index) };
leaf.into_child(index)
})
}
/// Gets a mutable reference to the item at `index`, or [`None`] if no such
/// item exists.
pub fn get_mut(&mut self, index: usize) -> Option<&mut T> {
(index < self.size).then(|| {
// SAFETY: `BTreeVec` uses `NodeRef`s in accordance with
// standard borrowing rules, so there are no existing references.
let (leaf, index) = unsafe { self.leaf_for_mut(index) };
leaf.into_child_mut(index)
})
}
/// Gets the first item in the vector, or [`None`] if the vector is empty.
pub fn first(&self) -> Option<&T> {
self.get(0)
}
/// Gets a mutable reference to the first item in the vector, or [`None`]
/// if the vector is empty.
pub fn first_mut(&mut self) -> Option<&mut T> {
self.get_mut(0)
}
/// Gets the last item in the vector, or [`None`] if the vector is empty.
pub fn last(&self) -> Option<&T> {
self.size.checked_sub(1).and_then(|s| self.get(s))
}
/// Gets a mutable reference to the last item in the vector, or [`None`] if
/// the vector is empty.
pub fn last_mut(&mut self) -> Option<&mut T> {
self.size.checked_sub(1).and_then(move |s| self.get_mut(s))
}
/// Inserts `item` at `index`.
///
/// # Panics
///
/// Panics if `index` is greater than [`self.len()`](Self::len).
pub fn insert(&mut self, index: usize, item: T) {
assert!(index <= self.size);
self.root.get_or_insert_with(|| {
LeafRef::alloc(&self.alloc).into_prefix().as_ptr()
});
// SAFETY: `BTreeVec` uses `NodeRef`s in accordance with standard
// borrowing rules, so there are no existing references.
let (leaf, index) = unsafe { self.leaf_for_mut(index) };
let root = insert(
ItemInsertion {
node: leaf,
index,
item,
root_size: self.size,
},
&self.alloc,
);
self.root = Some(root.as_ptr());
self.size += 1;
}
/// Inserts `item` at the end of the vector.
pub fn push(&mut self, item: T) {
self.insert(self.size, item);
}
/// Removes and returns the item at `index`.
///
/// # Panics
///
/// Panics if `index` is not less than [`self.len()`](Self::len).
pub fn remove(&mut self, index: usize) -> T {
assert!(index < self.size);
// SAFETY: `BTreeVec` uses `NodeRef`s in accordance with
// standard borrowing rules, so there are no existing references.
let (leaf, index) = unsafe { self.leaf_for_mut(index) };
let (root, item) = remove(leaf, index, &self.alloc);
self.root = Some(root.as_ptr());
self.size -= 1;
item
}
/// Removes and returns the last item in the vector, or [`None`] if the
/// vector is empty.
pub fn pop(&mut self) -> Option<T> {
self.size.checked_sub(1).map(|s| self.remove(s))
}
/// Gets an iterator that returns references to each item in the vector.
pub fn iter(&self) -> Iter<'_, T, B> {
// SAFETY: `BTreeVec` uses `NodeRef`s in accordance with standard
// borrowing rules, so there are no existing mutable references.
Iter {
leaf: self.root.map(|_| unsafe { self.leaf_for(0) }.0),
index: 0,
phantom: PhantomData,
}
}
/// Gets an iterator that returns mutable references to each item in the
/// vector.
pub fn iter_mut(&mut self) -> IterMut<'_, T, B> {
// SAFETY: `BTreeVec` uses `NodeRef`s in accordance with standard
// borrowing rules, so there are no existing references.
IterMut {
leaf: self.root.map(|_| unsafe { self.leaf_for_mut(0) }.0),
index: 0,
phantom: PhantomData,
}
}
}
impl<T, const B: usize, A> Default for BTreeVec<T, B, A>
where
A: Allocator + Default,
{
fn default() -> Self {
Self::create_in(A::default())
}
}
impl<T, const B: usize, A: Allocator> Index<usize> for BTreeVec<T, B, A> {
type Output = T;
fn index(&self, index: usize) -> &T {
self.get(index).unwrap()
}
}
impl<T, const B: usize, A: Allocator> IndexMut<usize> for BTreeVec<T, B, A> {
fn index_mut(&mut self, index: usize) -> &mut T {
self.get_mut(index).unwrap()
}
}
impl<T: Debug, const B: usize, A: Allocator> Debug for BTreeVec<T, B, A> {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self.iter()).finish()
}
}
// SAFETY: This `Drop` impl does not directly or indirectly access any data in
// any `T`, except for calling its destructor (see [1]), and `Self` contains a
// `PhantomData<Box<T>>` so dropck knows that `T` may be dropped (see [2]).
//
// [1]: https://doc.rust-lang.org/nomicon/dropck.html
// [2]: https://forge.rust-lang.org/libs/maintaining-std.html
// #is-there-a-manual-drop-implementation
#[cfg_attr(feature = "dropck_eyepatch", add_syntax::prepend(unsafe))]
impl<#[cfg_attr(feature = "dropck_eyepatch", may_dangle)] T, const B: usize, A>
Drop for BTreeVec<T, B, A>
where
A: Allocator,
{
fn drop(&mut self) {
if let Some(root) = self.root {
// SAFETY: `BTreeVec` uses `NodeRef`s in accordance with
// standard borrowing rules, so there are no existing
// references.
unsafe { NodeRef::new_mutable(root) }.destroy(&self.alloc);
}
}
}
/// An iterator over the items in a [`BTreeVec`].
pub struct Iter<'a, T, const B: usize> {
leaf: Option<LeafRef<T, B>>,
index: usize,
phantom: PhantomData<&'a T>,
}
impl<'a, T, const B: usize> Iterator for Iter<'a, T, B> {
type Item = &'a T;
fn next(&mut self) -> Option<Self::Item> {
let mut leaf = self.leaf?;
if self.index == leaf.length() {
self.leaf = self.leaf.take().unwrap().into_next().ok();
leaf = self.leaf?;
self.index = 0;
}
let index = self.index;
self.index += 1;
Some(leaf.into_child(index))
}
}
impl<T, const B: usize> FusedIterator for Iter<'_, T, B> {}
impl<T, const B: usize> Clone for Iter<'_, T, B> {
fn clone(&self) -> Self {
Self {
leaf: self.leaf,
index: self.index,
phantom: self.phantom,
}
}
}
// SAFETY: This type yields immutable references to items in the vector, so it
// can be `Send` as long as `T` is `Sync` (which means `&T` is `Send`).
unsafe impl<T: Sync, const B: usize> Send for Iter<'_, T, B> {}
// SAFETY: This type has no `&self` methods that access shared data or fields
// with non-`Sync` interior mutability, but `T` must be `Sync` to match the
// `Send` impl, since this type implements `Clone`, effectively allowing it to
// be sent.
unsafe impl<T: Sync, const B: usize> Sync for Iter<'_, T, B> {}
impl<'a, T, const B: usize, A> IntoIterator for &'a BTreeVec<T, B, A>
where
A: Allocator,
{
type Item = &'a T;
type IntoIter = Iter<'a, T, B>;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
/// A mutable iterator over the items in a [`BTreeVec`].
pub struct IterMut<'a, T, const B: usize> {
leaf: Option<LeafRef<T, B, Mutable>>,
index: usize,
phantom: PhantomData<&'a mut T>,
}
impl<'a, T, const B: usize> Iterator for IterMut<'a, T, B> {
type Item = &'a mut T;
fn next(&mut self) -> Option<Self::Item> {
let mut leaf = self.leaf.as_mut()?;
if self.index == leaf.length() {
self.leaf = self.leaf.take().unwrap().into_next().ok();
leaf = self.leaf.as_mut()?;
self.index = 0;
}
let index = self.index;
self.index += 1;
// SAFETY: Extending the lifetime to `'a` is okay because `'a` doesn't
// outlive the `BTreeVec` and we won't access this index again for the
// life of the iterator.
Some(unsafe { NonNull::from(leaf.child_mut(index)).as_mut() })
}
}
impl<T, const B: usize> FusedIterator for IterMut<'_, T, B> {}
// SAFETY: This type yields mutable references to items in the vector, so it
// can be `Send` as long as `T` is `Send`. `T` doesn't need to be `Sync`
// because no other iterator that yields items from the vector can exist at the
// same time as this iterator.
unsafe impl<T: Send, const B: usize> Send for IterMut<'_, T, B> {}
// SAFETY: This type has no `&self` methods that access any fields.
unsafe impl<T, const B: usize> Sync for IterMut<'_, T, B> {}
impl<'a, T, const B: usize, A> IntoIterator for &'a mut BTreeVec<T, B, A>
where
A: Allocator,
{
type Item = &'a mut T;
type IntoIter = IterMut<'a, T, B>;
fn into_iter(self) -> Self::IntoIter {
self.iter_mut()
}
}
/// An owning iterator over the items in a [`BTreeVec`].
pub struct IntoIter<T, const B: usize, A: Allocator = Global> {
leaf: Option<LeafRef<T, B, Mutable>>,
length: usize,
index: usize,
_tree: BTreeVec<T, B, A>,
}
impl<T, const B: usize, A: Allocator> Iterator for IntoIter<T, B, A> {
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
let mut leaf = self.leaf.as_mut()?;
if self.index == self.length {
self.leaf = self.leaf.take().unwrap().into_next().ok();
leaf = self.leaf.as_mut()?;
self.index = 0;
self.length = leaf.length();
leaf.set_zero_length();
}
let index = self.index;
self.index += 1;
// SAFETY: We haven't taken the item at `index` yet.
Some(unsafe { leaf.take_raw_child(index).assume_init() })
}
}
impl<T, const B: usize, A: Allocator> FusedIterator for IntoIter<T, B, A> {}
// SAFETY: This type owns the items in the vector, so it can be `Send` as long
// as `T` is `Send`.
unsafe impl<T, const B: usize, A> Send for IntoIter<T, B, A>
where
T: Send,
A: Allocator,
{
}
// SAFETY: This type has no `&self` methods that access any fields.
unsafe impl<T, const B: usize, A: Allocator> Sync for IntoIter<T, B, A> {}
impl<T, const B: usize, A: Allocator> Drop for IntoIter<T, B, A> {
fn drop(&mut self) {
let mut leaf = if let Some(leaf) = self.leaf.take() {
leaf
} else {
return;
};
for i in self.index..self.length {
// SAFETY: We haven't taken the item at `index` yet.
unsafe {
leaf.take_raw_child(i).assume_init();
}
}
}
}
impl<T, const B: usize, A: Allocator> IntoIterator for BTreeVec<T, B, A> {
type Item = T;
type IntoIter = IntoIter<T, B, A>;
fn into_iter(mut self) -> Self::IntoIter {
// SAFETY: `BTreeVec` uses `NodeRef`s in accordance with standard
// borrowing rules, so because we own the `BTreeVec`, there are no
// existing references.
let leaf = self.root.map(|_| unsafe { self.leaf_for_mut(0) }.0);
IntoIter {
index: 0,
length: leaf.as_ref().map_or(0, |leaf| leaf.length()),
leaf,
_tree: self,
}
}
}