1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
use bracket_algorithm_traits::prelude::BaseMap;
use std::cmp::Ordering;
use std::collections::{BinaryHeap, HashMap};
use std::convert::TryInto;
const MAX_ASTAR_STEPS: usize = 65536;
pub fn a_star_search<T>(start: T, end: T, map: &dyn BaseMap) -> NavigationPath
where
T: TryInto<usize>,
{
AStar::new(start.try_into().ok().unwrap(), end.try_into().ok().unwrap()).search(map)
}
#[derive(Clone, Default)]
pub struct NavigationPath {
pub destination: usize,
pub success: bool,
pub steps: Vec<usize>,
}
#[allow(dead_code)]
#[derive(Copy, Clone)]
struct Node {
idx: usize,
f: f32,
g: f32,
h: f32,
}
impl PartialEq for Node {
fn eq(&self, other: &Self) -> bool {
self.f == other.f
}
}
impl Eq for Node {}
impl Ord for Node {
fn cmp(&self, b: &Self) -> Ordering {
b.f.partial_cmp(&self.f).unwrap()
}
}
impl PartialOrd for Node {
fn partial_cmp(&self, b: &Self) -> Option<Ordering> {
b.f.partial_cmp(&self.f)
}
}
impl NavigationPath {
pub fn new() -> NavigationPath {
NavigationPath {
destination: 0,
success: false,
steps: Vec::new(),
}
}
}
struct AStar {
start: usize,
end: usize,
open_list: BinaryHeap<Node>,
closed_list: HashMap<usize, f32>,
parents: HashMap<usize, usize>,
step_counter: usize,
}
impl AStar {
fn new(start: usize, end: usize) -> AStar {
let mut open_list: BinaryHeap<Node> = BinaryHeap::new();
open_list.push(Node {
idx: start,
f: 0.0,
g: 0.0,
h: 0.0,
});
AStar {
start,
end,
open_list,
parents: HashMap::new(),
closed_list: HashMap::new(),
step_counter: 0,
}
}
fn distance_to_end(&self, idx: usize, map: &dyn BaseMap) -> f32 {
map.get_pathing_distance(idx, self.end)
}
fn add_successor(&mut self, q: Node, idx: usize, cost: f32, map: &dyn BaseMap) -> bool {
if idx == self.end {
self.parents.insert(idx, q.idx);
true
} else {
let distance = self.distance_to_end(idx, map);
let s = Node {
idx,
f: distance + cost,
g: cost,
h: distance,
};
let mut should_add = true;
for e in &self.open_list {
if e.f < s.f && e.idx == idx {
should_add = false;
}
}
if should_add && self.closed_list.contains_key(&idx) && self.closed_list[&idx] < s.f {
should_add = false;
}
if should_add {
self.open_list.push(s);
self.parents.insert(idx, q.idx);
}
false
}
}
fn found_it(&self) -> NavigationPath {
let mut result = NavigationPath::new();
result.success = true;
result.destination = self.end;
result.steps.push(self.end);
let mut current = self.end;
while current != self.start {
let parent = self.parents[¤t];
result.steps.insert(0, parent);
current = parent;
}
result
}
fn search(&mut self, map: &dyn BaseMap) -> NavigationPath {
let result = NavigationPath::new();
while !self.open_list.is_empty() && self.step_counter < MAX_ASTAR_STEPS {
self.step_counter += 1;
let q = self.open_list.pop().unwrap();
let successors = map.get_available_exits(q.idx);
for s in successors {
if self.add_successor(q, s.0, s.1 + q.f, map) {
let success = self.found_it();
return success;
}
}
if self.closed_list.contains_key(&q.idx) {
self.closed_list.remove(&q.idx);
}
self.closed_list.insert(q.idx, q.f);
}
result
}
}