bm25 2.3.2

BM25 embedder, scorer, and search engine
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
use crate::tokenizer::Tokenizer;
use fxhash::{hash, hash32, hash64};
#[cfg(feature = "parallelism")]
use rayon::prelude::*;
use std::{
    collections::HashMap,
    fmt::{self, Debug, Display},
    hash::Hash,
    marker::PhantomData,
    ops::{Deref, DerefMut},
};

pub type DefaultTokenEmbedder = u32;
pub type DefaultEmbeddingSpace = u32;

/// The default tokenizer is available via the `default_tokenizer` feature. It should fit most
/// use-cases. It splits on whitespace and punctuation, removes stop words and stems the
/// remaining words. It can also detect languages via the `language_detection` feature. This crate
/// uses `DefaultTokenizer` as the default concrete type for things that are generic
/// over a `Tokenizer`.
#[cfg(feature = "default_tokenizer")]
pub type DefaultTokenizer = crate::default_tokenizer::DefaultTokenizer;

/// A dummy type to represent the absence of a default tokenizer. If a compile error led you here,
/// you either need to enable the `default_tokenizer` feature, or specify your custom tokenizer as
/// a type parameter to whatever you're trying to construct.
#[cfg(not(feature = "default_tokenizer"))]
pub struct NoDefaultTokenizer {}
/// The default tokenizer is available via the `default_tokenizer` feature. It should fit most
/// use-cases. It splits on whitespace and punctuation, removes stop words and stems the
/// remaining words. It can also detect languages via the `language_detection` feature. This crate
/// uses `DefaultTokenizer` as the default concrete type for things that are generic
/// over a `Tokenizer`.
#[cfg(not(feature = "default_tokenizer"))]
pub type DefaultTokenizer = NoDefaultTokenizer;

/// Represents a token embedded in a D-dimensional space.
#[derive(PartialEq, Debug, Clone, PartialOrd)]
pub struct TokenEmbedding<D = DefaultEmbeddingSpace> {
    /// The index of the token in the embedding space.
    pub index: D,
    /// The value of the token in the embedding space.
    pub value: f32,
}

impl Display for TokenEmbedding {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{self:?}")
    }
}

/// Represents a document embedded in a D-dimensional space.
#[derive(PartialEq, Debug, Clone, PartialOrd)]
pub struct Embedding<D = DefaultEmbeddingSpace>(pub Vec<TokenEmbedding<D>>);

impl<D> Deref for Embedding<D> {
    type Target = Vec<TokenEmbedding<D>>;

    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl DerefMut for Embedding {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.0
    }
}

impl<D> Embedding<D> {
    /// Returns an iterator over the indices of the embedding.
    pub fn indices(&self) -> impl Iterator<Item = &D> {
        self.iter().map(|TokenEmbedding { index, .. }| index)
    }

    /// Returns an iterator over the values of the embedding.
    pub fn values(&self) -> impl Iterator<Item = &f32> {
        self.iter().map(|TokenEmbedding { value, .. }| value)
    }
}

impl<D: Debug> Display for Embedding<D> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{self:?}")
    }
}

/// A trait for embedding. Implement this to customise the embedding space and function.
pub trait TokenEmbedder {
    /// The output type of the embedder, i.e., the embedding space.
    type EmbeddingSpace;
    /// Embeds a token into the embedding space.
    fn embed(token: &str) -> Self::EmbeddingSpace;
}

impl TokenEmbedder for u32 {
    type EmbeddingSpace = Self;
    fn embed(token: &str) -> u32 {
        hash32(token)
    }
}

impl TokenEmbedder for u64 {
    type EmbeddingSpace = Self;
    fn embed(token: &str) -> u64 {
        hash64(token)
    }
}

impl TokenEmbedder for usize {
    type EmbeddingSpace = Self;
    fn embed(token: &str) -> usize {
        hash(token)
    }
}

/// Creates sparse embeddings from text. D is the type of the token embedder and T is the type of
/// the tokenizer.
#[derive(Debug)]
pub struct Embedder<D = DefaultTokenEmbedder, T = DefaultTokenizer> {
    tokenizer: T,
    k1: f32,
    b: f32,
    avgdl: f32,
    token_embedder_type: PhantomData<D>,
}

impl<D, T> Embedder<D, T> {
    const FALLBACK_AVGDL: f32 = 256.0;

    /// Returns the average document length used by the embedder.
    pub fn avgdl(&self) -> f32 {
        self.avgdl
    }

    /// Embeds the given text into the embedding space.
    pub fn embed(&self, text: &str) -> Embedding<D::EmbeddingSpace>
    where
        D: TokenEmbedder,
        D::EmbeddingSpace: Eq + Hash,
        T: Tokenizer,
    {
        let tokens = self.tokenizer.tokenize(text);
        let avgdl = if self.avgdl <= 0.0 {
            Self::FALLBACK_AVGDL
        } else {
            self.avgdl
        };
        let indices: Vec<D::EmbeddingSpace> = tokens.iter().map(|s| D::embed(s)).collect();
        let counts = indices.iter().fold(HashMap::new(), |mut acc, token| {
            let count = acc.entry(token).or_insert(0);
            *count += 1;
            acc
        });
        let values: Vec<f32> = indices
            .iter()
            .map(|i| {
                let token_frequency = *counts.get(i).unwrap_or(&0) as f32;
                let numerator = token_frequency * (self.k1 + 1.0);
                let denominator = token_frequency
                    + self.k1 * (1.0 - self.b + self.b * (tokens.len() as f32 / avgdl));
                numerator / denominator
            })
            .collect();

        Embedding(
            indices
                .into_iter()
                .zip(values)
                .map(|(index, value)| TokenEmbedding { index, value })
                .collect(),
        )
    }
}

/// A consuming builder for Embedder.
pub struct EmbedderBuilder<D = DefaultTokenEmbedder, T = DefaultTokenizer> {
    k1: f32,
    b: f32,
    avgdl: f32,
    tokenizer: T,
    token_embedder_type: PhantomData<D>,
}

impl<D, T> EmbedderBuilder<D, T> {
    /// Constructs a new EmbedderBuilder with the given average document length. Use this if you
    /// know the average document length in advance. If you don't, but you have your full corpus
    /// ahead of time, use `with_fit_to_corpus` or `with_tokenizer_and_fit_to_corpus` instead.
    ///
    /// If you have neither the full corpus nor a sample of it, you can configure the embedder to
    /// disregard document length by setting `b` to 0.0. In this case, it doesn't matter what
    /// value you pass to `with_avgdl`.
    ///
    /// The average document length is the average number of tokens in a document from your corpus;
    /// if you need access to this value, you can construct an Embedder and call `avgdl` on it.
    pub fn with_avgdl(avgdl: f32) -> EmbedderBuilder<D, T>
    where
        T: Default,
    {
        EmbedderBuilder {
            k1: 1.2,
            b: 0.75,
            avgdl,
            tokenizer: T::default(),
            token_embedder_type: PhantomData,
        }
    }

    /// Constructs a new EmbedderBuilder with its average document length fit to the given corpus.
    /// Use this if you have the full corpus (or a sample of it) available in advance. The embedder
    /// will assume the given tokenizer. Use the `parallelism` feature to speed the fitting process
    /// up for large corpora.
    pub fn with_tokenizer_and_fit_to_corpus(tokenizer: T, corpus: &[&str]) -> EmbedderBuilder<D, T>
    where
        T: Tokenizer + Sync,
    {
        let avgdl = if corpus.is_empty() {
            Embedder::<D>::FALLBACK_AVGDL
        } else {
            #[cfg(not(feature = "parallelism"))]
            let corpus_iter = corpus.iter();
            #[cfg(feature = "parallelism")]
            let corpus_iter = corpus.par_iter();
            let total_len: u64 = corpus_iter
                .map(|doc| tokenizer.tokenize(doc).len() as u64)
                .sum();
            (total_len as f64 / corpus.len() as f64) as f32
        };

        EmbedderBuilder {
            k1: 1.2,
            b: 0.75,
            avgdl,
            tokenizer,
            token_embedder_type: PhantomData,
        }
    }

    /// Sets the k1 parameter for the embedder. The default value is 1.2.
    pub fn k1(self, k1: f32) -> EmbedderBuilder<D, T> {
        EmbedderBuilder { k1, ..self }
    }

    /// Sets the b parameter for the embedder. The default value is 0.75.
    pub fn b(self, b: f32) -> EmbedderBuilder<D, T> {
        EmbedderBuilder { b, ..self }
    }

    /// Overrides the average document length for the embedder.
    pub fn avgdl(self, avgdl: f32) -> EmbedderBuilder<D, T> {
        EmbedderBuilder { avgdl, ..self }
    }

    /// Sets the tokenizer for the embedder.
    pub fn tokenizer(self, tokenizer: T) -> EmbedderBuilder<D, T> {
        EmbedderBuilder { tokenizer, ..self }
    }

    /// Builds the Embedder.
    pub fn build(self) -> Embedder<D, T> {
        Embedder {
            tokenizer: self.tokenizer,
            k1: self.k1,
            b: self.b,
            avgdl: self.avgdl,
            token_embedder_type: PhantomData,
        }
    }
}

#[cfg(feature = "default_tokenizer")]
impl<D> EmbedderBuilder<D, DefaultTokenizer> {
    /// Constructs a new EmbedderBuilder with its average document length fit to the given corpus.
    /// Use this if you have the full corpus (or a sample of it) available in advance. This
    /// function uses the default tokenizer configured with the input language mode. The embedder
    /// will assume this tokenizer. Use the `parallelism` feature to speed the fitting process up
    /// for large corpora.
    pub fn with_fit_to_corpus(
        language_mode: impl Into<crate::LanguageMode>,
        corpus: &[&str],
    ) -> EmbedderBuilder<D, DefaultTokenizer> {
        let tokenizer = DefaultTokenizer::new(language_mode);
        EmbedderBuilder::with_tokenizer_and_fit_to_corpus(tokenizer, corpus)
    }

    /// Sets the language mode for the embedder tokenizer.
    pub fn language_mode(
        self,
        language_mode: impl Into<crate::LanguageMode>,
    ) -> EmbedderBuilder<D, DefaultTokenizer> {
        let tokenizer = DefaultTokenizer::new(language_mode);
        EmbedderBuilder { tokenizer, ..self }
    }
}

#[cfg(test)]
#[allow(missing_docs)]
mod tests {
    use insta::assert_debug_snapshot;

    use crate::{
        test_data_loader::tests::{read_recipes, Recipe},
        Language, LanguageMode,
    };

    use super::*;

    impl Embedding {
        pub fn any() -> Self {
            Embedding(vec![TokenEmbedding {
                index: 1,
                value: 1.0,
            }])
        }
    }

    impl<D> TokenEmbedding<D> {
        pub fn new(index: D, value: f32) -> Self {
            TokenEmbedding { index, value }
        }
    }

    fn embed_recipes(recipe_file: &str, language_mode: LanguageMode) -> Vec<Embedding> {
        let recipes = read_recipes(recipe_file);
        let embedder: Embedder = EmbedderBuilder::with_fit_to_corpus(
            language_mode,
            &recipes
                .iter()
                .map(|Recipe { recipe, .. }| recipe.as_str())
                .collect::<Vec<_>>(),
        )
        .build();

        recipes
            .iter()
            .map(|Recipe { recipe, .. }| recipe.as_str())
            .map(|recipe| embedder.embed(recipe))
            .collect::<Vec<_>>()
    }

    #[test]
    fn it_weights_unique_words_equally() {
        let embedder = EmbedderBuilder::<u32>::with_avgdl(3.0).build();
        let embedding = embedder.embed("banana apple orange");

        assert!(embedding.len() == 3);
        assert!(embedding.windows(2).all(|e| e[0].value == e[1].value));
    }

    #[test]
    fn it_weights_repeated_words_unequally() {
        let embedder = EmbedderBuilder::<u32>::with_avgdl(3.0)
            .tokenizer(DefaultTokenizer::new(Language::English))
            .build();
        let embedding = embedder.embed("space station station");

        assert!(
            *embedding
                == vec![
                    TokenEmbedding::new(866767497, 1.0),
                    TokenEmbedding::new(666609503, 1.375),
                    TokenEmbedding::new(666609503, 1.375)
                ]
        );
    }

    #[test]
    fn it_constrains_avgdl() {
        let embedder = EmbedderBuilder::<u32>::with_avgdl(0.0)
            .language_mode(Language::English)
            .build();

        let embedding = embedder.embed("space station");

        assert!(!embedding.is_empty());
        assert!(embedding.iter().all(|e| e.value > 0.0));
    }

    #[test]
    fn it_handles_empty_corpus() {
        let embedder = EmbedderBuilder::<u32>::with_fit_to_corpus(Language::English, &[]).build();

        let embedding = embedder.embed("space station");

        assert!(!embedding.is_empty());
    }

    #[test]
    fn it_handles_empty_input() {
        let embedder = EmbedderBuilder::<u32>::with_avgdl(1.0).build();

        let embedding = embedder.embed("");

        assert!(embedding.is_empty());
    }

    #[test]
    fn it_allows_customisation_of_embedder() {
        #[derive(Eq, PartialEq, Hash, Clone, Debug)]
        struct MyType(u32);

        impl TokenEmbedder for MyType {
            type EmbeddingSpace = Self;
            fn embed(_: &str) -> Self {
                MyType(42)
            }
        }

        let embedder = EmbedderBuilder::<MyType>::with_avgdl(2.0).build();

        let embedding = embedder.embed("space station");

        assert_eq!(
            embedding.indices().cloned().collect::<Vec<_>>(),
            vec![MyType(42), MyType(42)]
        );
    }

    #[test]
    fn it_matches_snapshot_en() {
        let embeddings = embed_recipes("recipes_en.csv", LanguageMode::Fixed(Language::English));

        insta::with_settings!({snapshot_path => "../snapshots"}, {
            assert_debug_snapshot!(embeddings);
        });
    }

    #[test]
    fn it_matches_snapshot_de() {
        let embeddings = embed_recipes("recipes_de.csv", LanguageMode::Fixed(Language::German));

        insta::with_settings!({snapshot_path => "../snapshots"}, {
            assert_debug_snapshot!(embeddings);
        });
    }

    #[test]
    fn it_allows_customisation_of_tokenizer() {
        #[derive(Default)]
        struct MyTokenizer {}

        impl Tokenizer for MyTokenizer {
            fn tokenize(&self, input_text: &str) -> Vec<String> {
                input_text
                    .split("T")
                    .filter(|s| !s.is_empty())
                    .map(str::to_string)
                    .collect()
            }
        }

        let embedder = EmbedderBuilder::<u32, MyTokenizer>::with_avgdl(1.0).build();

        let embedding = embedder.embed("CupTofTtea");

        assert_eq!(
            embedding.indices().cloned().collect::<Vec<_>>(),
            vec![3568447556, 3221979461, 415655421]
        );
    }
}