1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
use crate::Bitmap;
use std::mem;
/// A sparse, 2-level bitmap with a low memory footprint.
///
/// A `CompressedBitmap` splits the bitmap up into blocks of `usize` bits, and
/// uses a second bitmap to mark populated blocks, lazily allocating them as
/// required. This strategy represents a sparsely populated bitmap such as:
///
/// ```text
/// ┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┐
/// │ 0 │ 0 │ 0 │ 0 │ 1 │ 0 │ 0 │ 1 │ 0 │ 0 │ 0 │ 0 │
/// └───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┘
/// ```
///
/// As two bitmaps, here initialising only a single blocks of `usize` bits in
/// the second bitmap:
///
/// ```text
/// ┌───┬───┬───┬───┐
/// Block map: │ 0 │ 1 │ 0 │ 0 │
/// └───┴─┬─┴───┴───┘
/// └──────┐
/// ┌ ─ ┬ ─ ┬ ─ ┬ ─ ┐ ┌───┬───▼───┬───┐ ┌ ─ ┬ ─ ┬ ─ ┬ ─ ┐
/// 0 0 0 0 │ 1 │ 0 │ 0 │ 1 │ 0 0 0 0
/// └ ─ ┴ ─ ┴ ─ ┴ ─ ┘ └───┴───┴───┴───┘ └ ─ ┴ ─ ┴ ─ ┴ ─ ┘
/// ```
///
/// This amortised `O(1)` insert operation takes ~4ns, while reading a value
/// takes a constant time ~1ns on a Core i7 @ 2.60GHz.
///
///
/// ## Features
///
/// If the `serde` feature is enabled, a `CompressedBitmap` supports
/// (de)serialisation with [serde].
///
/// [serde]: https://github.com/serde-rs/serde
#[derive(Debug, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct CompressedBitmap {
block_map: Vec<usize>,
bitmap: Vec<usize>,
#[cfg(debug_assertions)]
max_key: usize,
}
impl CompressedBitmap {
/// Construct a `CompressedBitmap` for space to hold up to `max_key` number
/// of bits.
pub fn new(max_key: usize) -> Self {
// Calculate how many instances of usize (blocks) are needed to hold
// max_key number of bits.
let blocks = index_for_key(max_key);
// Figure out how many usize elements are needed to represent blocks
// number of bitmaps.
let num_blocks = match blocks % (mem::size_of::<usize>() * 8) {
0 => index_for_key(blocks),
_ => index_for_key(blocks) + 1, // +1 to cover the remainder
};
// Allocate a block map.
//
// The block map contains bitmaps with 1 bits indicating the bitmap for
// that key has been allocated.
let mut block_map = Vec::new();
block_map.resize(num_blocks, 0);
CompressedBitmap {
bitmap: Vec::new(),
block_map,
#[cfg(debug_assertions)]
max_key,
}
}
pub fn size(&self) -> usize {
(self.block_map.capacity() * std::mem::size_of::<usize>())
+ (self.bitmap.capacity() * std::mem::size_of::<usize>())
+ std::mem::size_of_val(self)
}
/// Reduces the allocated memory usage of the filter to the minimum required
/// for the current filter contents.
///
/// This is useful to minimise the memory footprint of a populated,
/// read-only CompressedBitmap.
///
/// See [`Vec::shrink_to_fit`](std::vec::Vec::shrink_to_fit).
pub fn shrink_to_fit(&mut self) {
self.bitmap.shrink_to_fit();
self.block_map.shrink_to_fit();
// TODO: remove 0 blocks
}
/// Resets the state of the filter.
///
/// An efficient way to remove all elements in the filter to allow it to be
/// reused. Does not shrink the allocated backing memory, instead retaining
/// the capacity to avoid reallocations.
pub fn clear(&mut self) {
for block in self.block_map.iter_mut() {
*block = 0;
}
self.bitmap.truncate(0);
}
/// Inserts `key` into the filter.
///
/// # Panics
///
/// This method MAY panic if `key` is more than the `max_key` value provided
/// when initialising the bitmap.
///
/// If `debug_assertions` are enabled (such as in debug builds) inserting
/// `key > max` will always panic. In release builds, this may not panic for
/// values of `key` that are only slightly larger than `max_key` for
/// performance reasons.
pub fn set(&mut self, key: usize, value: bool) {
#[cfg(debug_assertions)]
debug_assert!(key <= self.max_key, "key {} > {} max", key, self.max_key);
// First compute the index of the bit in the bitmap if it was fully
// populated.
//
//
// Bitmap: │
// ▼
// ┌───┬───┬───┬───┐ ┌───┬───┬───┬───┐ ┌───┬───┬───┬───┐
// │ 0 │ 0 │ 0 │ 0 │ │ 0 │ 0 │ 0 │ 0 │ │ 0 │ 0 │ 0 │ 0 │
// └───┴───┴───┴───┘ └───┴───┴───┴───┘ └───┴───┴───┴───┘
// Block 0 Block 1 Block 2
//
//
// Next figure out which block (usize) this bitmap_index is part of.
//
// Bitmap: │
// ┌ ─ ─ ─ ─ ─ ─ ─ ─ ┐
// ┌───┬───┬───┬───┐ ┌───┬───┬───┬───┐ ┌───┬───┬───┬───┐
// │ 0 │ 0 │ 0 │ 0 │ │ 0 │ 0 │ 0 │ 0 │ │ 0 │ 0 │ 0 │ 0 │
// └───┴───┴───┴───┘ └───┴───┴───┴───┘ └───┴───┴───┴───┘
// Block 0 Block 1 Block 2
//
let block_index = index_for_key(key);
// Because the blocks are initialised lazily to provide the sparse
// filter behaviour, there may be no block yet allocated for this
// bitmap index. The block_map data structure is itself bitmap with
// a 1 bit indicating the block has been allocated.
//
// Check which usize in the block_map contains the bit representing
// the block.
//
// Block Map:
//
// ┌───┬───┬───┬───┐
// 0: │ 0 │ 1 │ 1 │ 0 │
// └───┴───┴───┴───┘
//
// ┌───┬───┬───┬───┐
// 1: │ 1 │ 0 │ 1 │ 0 │
// └─▲─┴───┴───┴───┘
// block_index ━━━━━━━┛
// ┌───┬───┬───┬───┐
// 2: │ 0 │ 0 │ 1 │ 1 │
// └───┴───┴───┴───┘
//
let block_map_index = index_for_key(block_index);
let block_map_bitmask = bitmask_for_key(block_index);
// The block has been allocated if the block usize contains a 1 bit.
//
// Because blocks are lazily initialised, block n may not be at
// block_map[n] if prior blocks have not been initialised. To
// calculate the offset of block n, the number of 1's in the
// block_map before bit n. This operation is very fast on modern
// hardware thanks to the POPCNT instruction.
//
// Block Map:
//
// ┌───┬───┐
// 0 │ 1 │ 1 │ 0
// └─△─┴─△─┘
// └───┼────────── popcount()
// ┏━━━┓ ┌─▽─┐
// ┃ 1 ┃ 0 │ 1 │ 0
// ┗━▲━┛ └───┘
// block_index ━━━━━━━┛
//
//
// In the above example, the popcount() is 3, and the block is the
// 3+1=4th block in bitmap. However as the arrays are zero-indexed,
// the +1 is omitted to adjust from the position 4, to index 3.
// Count the ones in the full blocks.
//
// This could chain() the final masked count_ones() call below using
// once_with, and while more readable, it is unfortunately measurably
// slower in practice.
let offset: usize = (0..block_map_index)
.map(|i| self.block_map[i].count_ones() as usize)
.sum();
// Mask out the higher bits in the block map to count the populated
// blocks before block_index
let mask = block_map_bitmask - 1;
let offset = offset + (self.block_map[block_map_index] & mask).count_ones() as usize;
// Offset now contains the index in bitmap at which block_index can
// be found.
//
// Because the blocks are lazily initialised, there may not yet be a
// block for block_map_index.
//
// Read the usize at block_map_index, and check the bit for
// block_index.
if self.block_map[block_map_index] & block_map_bitmask == 0 {
// If the value to be set is false, there's nothing to do.
if !value {
return;
}
// The block does not exist, insert it into the bitmap at
// block_index.
if offset >= self.bitmap.len() {
self.bitmap.push(bitmask_for_key(key));
} else {
// If offset is < bitmap.len() this will require moving all
// the elements at offset+1 one slot to the right to make
// room for the new element.
//
// For bitmaps with large numbers of elements to the right
// of offset, this can become expensive.
self.bitmap.insert(offset, bitmask_for_key(key));
}
self.block_map[block_map_index] |= block_map_bitmask;
return;
}
// Otherwise the block map indicates the block is already allocated
if value {
self.bitmap[offset as usize] |= bitmask_for_key(key);
} else {
self.bitmap[offset as usize] &= !bitmask_for_key(key);
}
}
/// Returns the value at `key`.
///
/// If a value for `key` was not previously set, `false` is returned.
///
/// # Panics
///
/// This method MAY panic if `key` is more than the `max_key` value provided
/// when initialising the bitmap.
pub fn get(&self, key: usize) -> bool {
let block_index = index_for_key(key);
let block_map_index = index_for_key(block_index);
let block_map_bitmask = bitmask_for_key(block_index);
if self.block_map[block_map_index] & block_map_bitmask == 0 {
return false;
}
let offset: usize = (0..block_map_index)
.map(|i| self.block_map[i].count_ones() as usize)
.sum();
let mask = block_map_bitmask - 1;
let offset: usize = offset + (self.block_map[block_map_index] & mask).count_ones() as usize;
self.bitmap[offset] & bitmask_for_key(key) != 0
}
}
impl Bitmap for CompressedBitmap {
fn get(&self, key: usize) -> bool {
self.get(key)
}
fn set(&mut self, key: usize, value: bool) {
self.set(key, value)
}
fn byte_size(&self) -> usize {
self.size()
}
}
#[inline(always)]
fn bitmask_for_key(key: usize) -> usize {
1 << (key % (mem::size_of::<usize>() * 8))
}
#[inline(always)]
fn index_for_key(key: usize) -> usize {
key / (mem::size_of::<usize>() * 8)
}
#[cfg(test)]
mod tests {
use super::*;
use quickcheck_macros::quickcheck;
macro_rules! contains_only_truthy {
($bitmap:ident, $max:expr; $(
$element:expr
),*) => {
let truthy = vec![$($element,)*];
for i in 0..$max {
assert!($bitmap.get(i) == truthy.contains(&i), "unexpected value {}", i);
}
};
}
#[test]
fn test_set_contains() {
let mut b = CompressedBitmap::new(100);
b.set(100, true);
b.set(0, true);
b.set(42, true);
contains_only_truthy!(b, 100; 100, 0, 42);
assert!(b.get(100));
assert!(b.get(0));
assert!(b.get(42));
}
#[test]
fn test_clear() {
let mut b = CompressedBitmap::new(100);
b.set(100, true);
b.set(0, true);
b.set(42, true);
contains_only_truthy!(b, 100; 100, 0, 42);
b.clear();
contains_only_truthy!(b, 100;);
}
#[test]
fn test_set_true_false() {
let mut b = CompressedBitmap::new(100);
b.set(42, true);
assert!(b.get(42));
b.set(42, false);
assert!(!b.get(42));
}
#[quickcheck]
#[should_panic]
fn test_panic_exceeds_max(max: u16) {
let max = max as usize;
let mut b = CompressedBitmap::new(max);
b.set(max + 1, true);
}
#[quickcheck]
fn test_set_contains_prop(mut vals: Vec<u16>) {
vals.truncate(10);
let mut b = CompressedBitmap::new(u16::MAX.into());
for v in &vals {
b.set(*v as usize, true);
}
for i in 0..u16::MAX {
assert!(
b.get(i as usize) == vals.contains(&i),
"unexpected value {}",
i
);
}
}
#[cfg(feature = "serde")]
#[test]
fn serde() {
let mut b = CompressedBitmap::new(100);
b.set(1, true);
b.set(2, false);
b.set(3, true);
contains_only_truthy!(b, 100; 1, 3);
let encoded = serde_json::to_string(&b).unwrap();
let decoded: CompressedBitmap = serde_json::from_str(&encoded).unwrap();
contains_only_truthy!(decoded, 100; 1, 3);
}
}