bitvek 0.3.8

A simple bit vector implementation.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
//! Say, we have a bit vector ---
//!
//! it's nothing better than a [`Vec<bool>`], but ...
//!
//! what if we implement it,
//!
//! and save some poor bits of memory?
//!
//! # Quick Start
//!
//! ```
//! use bitvek::bitvec;
//!
//! let vec = bitvec![
//!     true, true, true, true, false, false, false, false,
//!     false, false, false, false, true, true, true, true,
//! ];
//! ```
//!
//! Find it cumbersome? Try this:
//!
//! ```
//! # use bitvek::bitvec;
//! #
//! // The total number of bits must be a multiple of 8.
//! let vec = bitvec![0b11110000, 0b00001111];
//! ```
//!
//! # Memory Efficiency
//!
//! To achieve memory savings, the total number of bits stored must
//! exceed twice the machine word size in bytes, corresponding to 8
//! for 32-bit systems and 16 for 64-bit systems.

#![no_std]

extern crate alloc;

pub use self::iter::{IntoIter, Iter};

use alloc::vec::Vec;
use core::cmp::max;

mod bitwise;
mod convert;
mod eq;
mod extend;
mod fmt;
mod hash;
mod index;
mod iter;
mod macros;

#[cfg(feature = "serde")]
mod serde;

const BITS_PER_BYTE: usize = u8::BITS as usize;
const BITS_PER_WORD: usize = usize::BITS as usize;
const BYTES_PER_WORD: usize = size_of::<usize>();

// As the name suggests, this is a bit vector.
#[derive(Clone, Default)]
pub struct BitVec {
    len: usize,
    data: Vec<usize>,
}

impl BitVec {
    /// Creates a new, empty [`BitVec`].
    ///
    /// # Examples
    ///
    /// ```
    /// use bitvek::BitVec;
    ///
    /// let vec = BitVec::new();
    /// ```
    #[inline]
    pub const fn new() -> Self {
        let len = 0;
        let data = Vec::new();
        Self { len, data }
    }

    /// Creates a new, empty [`BitVec`] with the specified capacity.
    ///
    /// # Notes
    ///
    /// The actual capacity will be rounded up to the nearest multiple of
    /// the machine word size in bits.
    ///
    /// # Examples
    ///
    /// ```
    /// use bitvek::BitVec;
    ///
    /// let vec = BitVec::with_capacity(10);
    /// assert_eq!(vec.len(), 0);
    /// assert!(vec.capacity() >= 10);
    /// ```
    #[inline]
    pub fn with_capacity(capacity: usize) -> Self {
        let len = 0;
        let words = Self::words_required(capacity);
        let data = Vec::with_capacity(words);
        Self { len, data }
    }
}

impl BitVec {
    /// Returns the total number of bits the vector can hold
    /// without reallocating.
    ///
    /// # Examples
    ///
    /// ```
    /// use bitvek::BitVec;
    ///
    /// let mut vec = BitVec::with_capacity(10);
    /// vec.push(true);
    /// assert!(vec.capacity() >= 10);
    /// ```
    #[inline]
    pub fn capacity(&self) -> usize {
        self.data.capacity().saturating_mul(BITS_PER_WORD)
    }

    /// Returns the number of bits in the vector.
    ///
    /// # Examples
    ///
    /// ```
    /// use bitvek::bitvec;
    ///
    /// let vec = bitvec![true, true, false, false];
    /// assert_eq!(vec.len(), 4);
    /// ```
    #[inline]
    pub fn len(&self) -> usize {
        self.len
    }

    /// Returns `true` if the vector contains no bits.
    ///
    /// # Examples
    ///
    /// ```
    /// use bitvek::bitvec;
    ///
    /// let vec = bitvec![];
    /// assert!(vec.is_empty());
    ///
    /// let vec = bitvec![true, true, false, false];
    /// assert!(!vec.is_empty());
    /// ```
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.len == 0
    }
}

impl BitVec {
    /// Returns the bit at the specified index, if in bounds.
    ///
    /// # Examples
    ///
    /// ```
    /// use bitvek::bitvec;
    ///
    /// let vec = bitvec![true, true, false, false];
    /// assert_eq!(vec.get(3), Some(false));
    /// assert_eq!(vec.get(4), None);
    /// ```
    #[inline]
    pub fn get(&self, index: usize) -> Option<bool> {
        if index >= self.len {
            None
        } else {
            unsafe { Some(self.get_unchecked(index)) }
        }
    }

    /// Returns the bit at the specified index, without performing any
    /// bounds checking.
    ///
    /// # Safety
    ///
    /// Calling this method with an out-of-bounds index is *[undefined behavior]*.
    ///
    /// # Examples
    ///
    /// ```
    /// use bitvek::bitvec;
    ///
    /// let vec = bitvec![true, true, false, false];
    /// unsafe { assert_eq!(vec.get_unchecked(3), false) };
    /// ```
    ///
    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
    pub unsafe fn get_unchecked(&self, index: usize) -> bool {
        let (div, rem) = (index / BITS_PER_WORD, index % BITS_PER_WORD);
        let word = unsafe { self.data.get_unchecked(div) };
        let mask = 1 << (BITS_PER_WORD - 1 - rem);
        word & mask != 0
    }

    /// Sets the bit at the specified index to the specified value,
    /// if in bounds.
    ///
    /// # Examples
    ///
    /// ```
    /// use bitvek::bitvec;
    ///
    /// let mut vec = bitvec![true, true, false, false];
    /// assert!(vec.set(2, true).is_some());
    /// assert!(vec.set(3, true).is_some());
    /// assert!(vec.set(4, true).is_none());
    /// assert_eq!(vec, bitvec![true; 4]);
    /// ```
    #[inline]
    #[must_use]
    pub fn set(&mut self, index: usize, value: bool) -> Option<&mut Self> {
        if index >= self.len {
            None
        } else {
            unsafe { Some(self.set_unchecked(index, value)) }
        }
    }

    /// Sets the bit at the specified index to the specified value,
    /// without performing any bounds checking.
    ///
    /// # Safety
    ///
    /// Calling this method with an out-of-bounds index is *[undefined behavior]*.
    ///
    /// # Examples
    ///
    /// ```
    /// use bitvek::bitvec;
    ///
    /// let mut vec = bitvec![true, true, false, false];
    /// unsafe {
    ///     vec.set_unchecked(2, true);
    ///     vec.set_unchecked(3, true);
    /// }
    /// assert_eq!(vec, bitvec![true; 4]);
    /// ```
    ///
    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
    pub unsafe fn set_unchecked(&mut self, index: usize, value: bool) -> &mut Self {
        let (div, rem) = (index / BITS_PER_WORD, index % BITS_PER_WORD);
        let word = unsafe { self.data.get_unchecked_mut(div) };
        let mask = 1 << (BITS_PER_WORD - 1 - rem);
        if value {
            *word |= mask;
        } else {
            *word &= !mask;
        }
        self
    }

    /// Appends a bit to the back of the vector.
    ///
    /// # Panics
    ///
    /// Panics if the required capacity exceeds `usize::MAX` bits.
    ///
    /// # Examples
    ///
    /// ```
    /// use bitvek::bitvec;
    ///
    /// let mut vec = bitvec![true, true, false, false];
    /// vec.push(true);
    /// assert_eq!(vec, bitvec![true, true, false, false, true]);
    /// ```
    pub fn push(&mut self, value: bool) -> &mut Self {
        if self.len == usize::MAX {
            panic!("capacity overflow")
        }
        if self.len % BITS_PER_WORD != 0 {
            // `self.len` as an index is out of bounds and directly
            // violates the safety contract of `Self::set_unchecked`.
            // However, this code is safe due to a full understanding
            // of its internal implementation.
            unsafe {
                self.set_unchecked(self.len, value);
            }
        } else if value {
            self.data.push(const { 1 << (BITS_PER_WORD - 1) });
        } else {
            self.data.push(0);
        }
        self.len += 1;
        self
    }

    /// Removes the last bit from the vector and returns it, or `None` if
    /// the vector is empty.
    ///
    /// # Examples
    ///
    /// ```
    /// use bitvek::bitvec;
    ///
    /// let mut vec = bitvec![true, true, false, false];
    /// assert_eq!(vec.pop(), Some(false));
    /// assert_eq!(vec, bitvec![true, true, false]);
    /// ```
    pub fn pop(&mut self) -> Option<bool> {
        if self.is_empty() {
            return None;
        }
        let last = self.len - 1;
        let value = unsafe { self.get_unchecked(last) };
        if last % BITS_PER_WORD == 0 {
            unsafe {
                self.data.set_len(self.data.len() - 1);
            }
        }
        self.len = last;
        Some(value)
    }

    /// Shrinks the capacity of the vector as much as possible.
    ///
    /// # Examples
    ///
    /// ```
    /// use bitvek::{BitVec, bitvec};
    ///
    /// let mut vec = BitVec::with_capacity(10);
    /// vec.extend([true, true, false, false]);
    /// assert!(vec.capacity() >= 10);
    /// assert_eq!(vec, bitvec![true, true, false, false]);
    ///
    /// vec.shrink_to_fit();
    /// assert!(vec.capacity() >= 4);
    /// assert_eq!(vec, bitvec![true, true, false, false]);
    /// ```
    #[inline]
    pub fn shrink_to_fit(&mut self) -> &mut Self {
        let min_words = Self::words_required(self.len);
        self.data.truncate(min_words);
        self.data.shrink_to_fit();
        self
    }

    /// Shrinks the capacity of the vector with a lower bound.
    ///
    /// If the current capacity is less than the lower limit,
    /// this is a no-op.
    ///
    /// # Examples
    ///
    /// ```
    /// use bitvek::{BitVec, bitvec};
    ///
    /// let mut vec = BitVec::with_capacity(10);
    /// vec.extend([true, true, false, false]);
    /// assert!(vec.capacity() >= 10);
    /// assert_eq!(vec, bitvec![true, true, false, false]);
    ///
    /// vec.shrink_to(8);
    /// assert!(vec.capacity() >= 8);
    /// assert_eq!(vec, bitvec![true, true, false, false]);
    ///
    /// vec.shrink_to(0);
    /// assert!(vec.capacity() >= 4);
    /// assert_eq!(vec, bitvec![true, true, false, false]);
    /// ```
    #[inline]
    pub fn shrink_to(&mut self, min_capacity: usize) -> &mut Self {
        let min_capacity = max(self.len, min_capacity);
        let min_words = Self::words_required(min_capacity);
        self.data.truncate(min_words);
        self.data.shrink_to_fit();
        self
    }
}

impl BitVec {
    fn bytes_required(bits: usize) -> usize {
        if bits == 0 {
            0
        } else {
            (bits - 1) / BITS_PER_BYTE + 1
        }
    }

    fn words_required(bits: usize) -> usize {
        if bits == 0 {
            0
        } else {
            (bits - 1) / BITS_PER_WORD + 1
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use alloc::vec;

    #[test]
    fn test_new() {
        let vec = BitVec::new();
        assert_eq!(vec.len, 0);
        assert_eq!(vec.data, Vec::new());
    }

    #[test]
    fn test_with_capacity() {
        let vec = BitVec::with_capacity(0);
        assert_eq!(vec.len, 0);
        assert_eq!(vec.data.len(), 0);
        assert_eq!(vec.data.capacity(), 0);

        let vec = BitVec::with_capacity(1);
        assert_eq!(vec.len, 0);
        assert_eq!(vec.data.len(), 0);
        assert_eq!(vec.data.capacity(), 1);

        let vec = BitVec::with_capacity(BITS_PER_WORD);
        assert_eq!(vec.len, 0);
        assert_eq!(vec.data.len(), 0);
        assert_eq!(vec.data.capacity(), 1);

        let vec = BitVec::with_capacity(BITS_PER_WORD + 1);
        assert_eq!(vec.len, 0);
        assert_eq!(vec.data.len(), 0);
        assert_eq!(vec.data.capacity(), 2);
    }

    #[test]
    fn test_capacity() {
        let vec = BitVec::with_capacity(0);
        assert_eq!(vec.capacity(), 0);

        let vec = BitVec::with_capacity(1);
        assert_eq!(vec.capacity(), BITS_PER_WORD);

        let vec = BitVec::with_capacity(BITS_PER_WORD);
        assert_eq!(vec.capacity(), BITS_PER_WORD);

        let vec = BitVec::with_capacity(BITS_PER_WORD + 1);
        assert_eq!(vec.capacity(), BITS_PER_WORD * 2);

        // unable to cover (run out of memory)
        // let vec = BitVec {
        //     len: 0,
        //     data: Vec::with_capacity(isize::MAX as usize),
        // };
        // assert_eq!(vec.capacity(), usize::MAX);
    }

    #[test]
    fn test_get() {
        let vec = bitvec![true, true, false, false];
        assert_eq!(vec.get(0), Some(true));
        assert_eq!(vec.get(1), Some(true));
        assert_eq!(vec.get(2), Some(false));
        assert_eq!(vec.get(3), Some(false));
        assert_eq!(vec.get(4), None);

        let vec = bitvec![true; BITS_PER_WORD];
        assert_eq!(vec.get(BITS_PER_WORD - 1), Some(true));
        assert_eq!(vec.get(BITS_PER_WORD), None);

        let vec = bitvec![true; BITS_PER_WORD + 1];
        assert_eq!(vec.get(BITS_PER_WORD), Some(true));
        assert_eq!(vec.get(BITS_PER_WORD + 1), None);
    }

    #[test]
    fn test_set() {
        let mut vec = bitvec![true, true, false, false];
        assert!(vec.set(0, true).is_some());
        assert!(vec.set(1, false).is_some());
        assert!(vec.set(2, true).is_some());
        assert!(vec.set(3, false).is_some());
        assert!(vec.set(4, true).is_none());
        assert_eq!(vec, bitvec![true, false, true, false]);

        let mut vec = bitvec![true; BITS_PER_WORD];
        assert_eq!(vec.get(BITS_PER_WORD - 1), Some(true));
        assert!(vec.set(BITS_PER_WORD - 1, false).is_some());
        assert_eq!(vec.get(BITS_PER_WORD - 1), Some(false));
        assert!(vec.set(BITS_PER_WORD, false).is_none());

        let mut vec = bitvec![true; BITS_PER_WORD + 1];
        assert_eq!(vec.get(BITS_PER_WORD), Some(true));
        assert!(vec.set(BITS_PER_WORD, false).is_some());
        assert_eq!(vec.get(BITS_PER_WORD), Some(false));
        assert!(vec.set(BITS_PER_WORD + 1, false).is_none());
    }

    #[test]
    fn test_push() {
        let mut vec = bitvec![true, true, false, false];
        vec.push(true);
        assert_eq!(vec, bitvec![true, true, false, false, true]);
        vec.push(false);
        assert_eq!(vec, bitvec![true, true, false, false, true, false]);

        let mut vec = bitvec![true; BITS_PER_WORD - 1];
        vec.push(true);
        assert_eq!(vec.len, BITS_PER_WORD);
        assert_eq!(vec.data, vec![usize::MAX]);
        vec.push(false);
        assert_eq!(vec.len, BITS_PER_WORD + 1);
        assert_eq!(vec.data, vec![usize::MAX, 0]);
    }

    #[test]
    fn test_pop() {
        let mut vec = bitvec![true, true, false, false];
        assert_eq!(vec.pop(), Some(false));
        assert_eq!(vec, bitvec![true, true, false]);
        assert_eq!(vec.pop(), Some(false));
        assert_eq!(vec, bitvec![true, true]);
        assert_eq!(vec.pop(), Some(true));
        assert_eq!(vec, bitvec![true]);
        assert_eq!(vec.pop(), Some(true));
        assert_eq!(vec, bitvec![]);
        assert_eq!(vec.pop(), None);
        assert_eq!(vec, bitvec![]);

        let mut vec = bitvec![false; BITS_PER_WORD + 1];
        vec.push(true);
        assert_eq!(vec.pop(), Some(true));
        assert_eq!(vec.pop(), Some(false));

        let mut vec = bitvec![true; BITS_PER_WORD + 1];
        while vec.pop().is_some() {}
        assert_eq!(vec.len, 0);
        assert_eq!(vec.data.len(), 0);
    }
}