# BitNet CLI
[](https://crates.io/crates/bitnet-cli)
[](https://docs.rs/bitnet-cli)
[](../LICENSE)
Command-line interface for BitNet neural networks, providing tools for model conversion, inference, training, benchmarking, and profiling.
## ๐ฏ Purpose
`bitnet-cli` provides a comprehensive command-line interface for BitNet operations:
- **Model Operations**: Convert, quantize, and optimize models
- **Inference Tools**: Run inference with various configurations
- **Training Commands**: Train and fine-tune BitNet models
- **Benchmarking**: Performance benchmarking and profiling
- **Utilities**: Model analysis, validation, and debugging tools
## ๐ด Current Status: **COMMERCIAL DEVELOPMENT PRIORITY**
โ ๏ธ **This crate is currently a high-priority development target for the Commercial Readiness Phase.**
The current `src/main.rs` contains only a placeholder, but **BitNet CLI is essential for commercial customer adoption** and is prioritized for immediate development in the commercial readiness phase.
**Commercial Impact**: CLI tools are critical for developer adoption and enterprise deployment workflows.
**Development Priority**: **HIGH** - Essential for customer onboarding and production deployment
**Timeline**: Month 1 of Commercial Phase (September 2025)
**Target Features**: Model conversion, inference tools, performance benchmarking, deployment utilities
## โ
What Needs to be Implemented - Commercial Priority Features
### ๐ด **Model Management Commands** (Month 1 Commercial Priority)
#### Model Conversion & Optimization
- **Format Conversion**: Convert between different model formats (SafeTensors, ONNX, PyTorch)
- **BitNet Quantization**: Convert FP32/FP16 models to BitNet 1.58-bit format
- **Model Optimization**: Apply graph optimizations and operator fusion for production deployment
- **Validation Suite**: Comprehensive model correctness and performance validation
#### Enterprise Deployment Tools
- **Cloud Deployment**: Deploy models to AWS, Azure, GCP with infrastructure automation
- **Container Generation**: Automatic Docker/Kubernetes deployment configuration
- **Configuration Management**: Environment-specific configuration and secrets management
- **Health Monitoring**: Production monitoring and alerting setup
#### Performance & Analytics
- **Benchmarking Suite**: Comprehensive performance testing across hardware configurations
- **Cost Analysis**: ROI calculation and cost optimization recommendations
- **Performance Profiling**: Detailed performance analysis with optimization suggestions
- **Comparative Analysis**: Performance comparison with alternative quantization methods
### ๐ก **Developer Experience Commands** (Month 2-3 Commercial Priority)
#### Model Analysis & Debugging
- **Model Info**: Display model architecture, parameters, memory usage, and compatibility
- **Layer Analysis**: Deep dive into individual layers and their quantization characteristics
- **Quantization Quality**: Analyze quantization accuracy and identify potential issues
- **Debug Tools**: Interactive debugging and troubleshooting utilities
#### Integration Tools
- **SDK Generation**: Generate language-specific SDKs and integration code
- **API Documentation**: Generate API docs and integration examples
- **Test Generation**: Automatic test case generation for model validation
- **Migration Tools**: Assist migration from other quantization frameworks
### ๐ข **Commercial Integration Commands** (Month 1 Essential)
#### Customer Onboarding
- **Quick Start**: Interactive setup wizard for new customers
- **Sample Projects**: Generate example projects and integration templates
- **Configuration Wizard**: Guided setup for production environments
- **License Management**: License validation and feature activation
#### Production Operations
- **Health Check**: Comprehensive system health and performance validation
- **Log Analysis**: Parse and analyze production logs for optimization opportunities
- **Backup/Restore**: Model and configuration backup and recovery tools
- **Update Management**: Safe production updates with rollback capabilities
- **Model Comparison**: Compare different model versions and formats
- **Model Merging**: Merge LoRA adapters with base models
- **Model Splitting**: Split large models for distributed inference
- **Model Compression**: Apply additional compression techniques
### ๐ด **Inference Commands** (Not Implemented)
#### Interactive Inference
- **Chat Mode**: Interactive chat interface for language models
- **Completion Mode**: Text completion with various sampling strategies
- **Batch Inference**: Process multiple inputs efficiently
- **Streaming Inference**: Real-time streaming text generation
#### Inference Configuration
- **Device Selection**: Choose between CPU, GPU, and Neural Engine
- **Performance Tuning**: Optimize inference for speed or memory
- **Quantization Settings**: Configure runtime quantization parameters
- **Generation Parameters**: Control temperature, top-k, top-p, etc.
#### Inference Utilities
- **Benchmark Inference**: Measure inference performance
- **Memory Profiling**: Profile memory usage during inference
- **Accuracy Testing**: Test model accuracy on datasets
- **Latency Analysis**: Analyze inference latency characteristics
### ๐ด **Training Commands** (Not Implemented)
#### Training Management
- **Start Training**: Launch training jobs with various configurations
- **Resume Training**: Resume interrupted training from checkpoints
- **Monitor Training**: Monitor training progress and metrics
- **Stop Training**: Gracefully stop training jobs
#### Fine-Tuning
- **LoRA Fine-tuning**: Fine-tune models with LoRA adapters
- **QLoRA Fine-tuning**: Memory-efficient fine-tuning with QLoRA
- **Full Fine-tuning**: Traditional full model fine-tuning
- **Custom Fine-tuning**: Custom fine-tuning strategies
#### Training Utilities
- **Dataset Preparation**: Prepare and validate training datasets
- **Hyperparameter Tuning**: Automated hyperparameter optimization
- **Training Analysis**: Analyze training metrics and convergence
- **Model Evaluation**: Evaluate trained models on test sets
### ๐ด **Benchmarking and Profiling** (Not Implemented)
#### Performance Benchmarking
- **Inference Benchmarks**: Comprehensive inference performance testing
- **Training Benchmarks**: Training performance and scaling tests
- **Memory Benchmarks**: Memory usage and efficiency tests
- **Throughput Benchmarks**: Measure tokens per second and batch throughput
#### System Profiling
- **Hardware Profiling**: Profile CPU, GPU, and memory usage
- **Thermal Profiling**: Monitor thermal characteristics during operation
- **Power Profiling**: Measure power consumption (on supported platforms)
- **Network Profiling**: Profile distributed training communication
#### Comparative Analysis
- **Model Comparison**: Compare different models and configurations
- **Hardware Comparison**: Compare performance across different hardware
- **Configuration Comparison**: Compare different runtime configurations
- **Historical Analysis**: Track performance changes over time
## ๐ Planned CLI Interface
### Model Operations
```bash
# Convert model formats
bitnet model convert --input model.pytorch --output model.safetensors --format safetensors
# Quantize model to BitNet format
bitnet model quantize --input model.safetensors --output model_bitnet.safetensors --bits 1.58
# Analyze model
bitnet model info model.safetensors
bitnet model analyze --detailed model.safetensors
# Optimize model
bitnet model optimize --input model.safetensors --output optimized.safetensors --target apple-silicon
```
### Inference Operations
```bash
# Interactive chat
bitnet chat --model model.safetensors --device auto
# Text completion
bitnet complete --model model.safetensors --prompt "The future of AI is" --max-length 100
# Batch inference
bitnet infer --model model.safetensors --input prompts.txt --output results.txt --batch-size 32
# Streaming inference
bitnet stream --model model.safetensors --prompt "Tell me a story" --stream-tokens
```
### Training Operations
```bash
# Start training
bitnet train --model base_model.safetensors --dataset dataset.jsonl --config training_config.yaml
# LoRA fine-tuning
bitnet finetune lora --model model.safetensors --dataset dataset.jsonl --rank 16 --alpha 32
# QLoRA fine-tuning
bitnet finetune qlora --model model.safetensors --dataset dataset.jsonl --bits 4
# Resume training
bitnet train resume --checkpoint checkpoint_1000.pt
```
### Benchmarking Operations
```bash
# Benchmark inference
bitnet benchmark inference --model model.safetensors --batch-sizes 1,8,32 --sequence-lengths 512,1024,2048
# Benchmark training
bitnet benchmark training --model model.safetensors --dataset dataset.jsonl --batch-sizes 8,16,32
# System profiling
bitnet profile system --model model.safetensors --duration 60s --output profile.json
# Compare models
bitnet compare models model1.safetensors model2.safetensors --metric throughput,memory,accuracy
```
### Utility Operations
```bash
# Validate model
bitnet validate --model model.safetensors --test-dataset test.jsonl
# Model diagnostics
bitnet diagnose --model model.safetensors --verbose
# Configuration management
bitnet config show
bitnet config set device.default gpu
bitnet config reset
# Help and documentation
bitnet help
bitnet help train
bitnet --version
```
## ๐๏ธ Planned Architecture
### CLI Structure
```
bitnet-cli/src/
โโโ main.rs # Main CLI entry point
โโโ cli/ # CLI interface and parsing
โ โโโ mod.rs # CLI module interface
โ โโโ app.rs # Main CLI application
โ โโโ commands/ # Command implementations
โ โ โโโ mod.rs # Commands interface
โ โ โโโ model.rs # Model management commands
โ โ โโโ inference.rs # Inference commands
โ โ โโโ training.rs # Training commands
โ โ โโโ benchmark.rs # Benchmarking commands
โ โ โโโ profile.rs # Profiling commands
โ โ โโโ config.rs # Configuration commands
โ โ โโโ utils.rs # Utility commands
โ โโโ args/ # Command-line argument parsing
โ โ โโโ mod.rs # Args interface
โ โ โโโ model_args.rs # Model command arguments
โ โ โโโ inference_args.rs # Inference arguments
โ โ โโโ training_args.rs # Training arguments
โ โ โโโ common_args.rs # Common arguments
โ โโโ output/ # Output formatting
โ โโโ mod.rs # Output interface
โ โโโ formatters.rs # Output formatters
โ โโโ progress.rs # Progress indicators
โ โโโ tables.rs # Table formatting
โโโ config/ # Configuration management
โ โโโ mod.rs # Config interface
โ โโโ settings.rs # Application settings
โ โโโ profiles.rs # Configuration profiles
โ โโโ validation.rs # Config validation
โ โโโ migration.rs # Config migration
โโโ operations/ # Core operations
โ โโโ mod.rs # Operations interface
โ โโโ model_ops.rs # Model operations
โ โโโ inference_ops.rs # Inference operations
โ โโโ training_ops.rs # Training operations
โ โโโ benchmark_ops.rs # Benchmarking operations
โ โโโ profile_ops.rs # Profiling operations
โโโ interactive/ # Interactive modes
โ โโโ mod.rs # Interactive interface
โ โโโ chat.rs # Chat interface
โ โโโ repl.rs # REPL interface
โ โโโ wizard.rs # Configuration wizard
โ โโโ monitor.rs # Training monitor
โโโ utils/ # CLI utilities
โ โโโ mod.rs # Utils interface
โ โโโ logging.rs # Logging setup
โ โโโ error_handling.rs # Error handling
โ โโโ file_utils.rs # File utilities
โ โโโ system_info.rs # System information
โ โโโ validation.rs # Input validation
โโโ integrations/ # External integrations
โโโ mod.rs # Integrations interface
โโโ tensorboard.rs # TensorBoard integration
โโโ wandb.rs # Weights & Biases
โโโ mlflow.rs # MLflow integration
โโโ huggingface.rs # Hugging Face Hub
```
### Command Structure
```rust
// Example command structure
use clap::{Parser, Subcommand};
#[derive(Parser)]
#[command(name = "bitnet")]
#[command(about = "BitNet neural network toolkit")]
pub struct Cli {
#[command(subcommand)]
pub command: Commands,
#[arg(long, global = true)]
pub verbose: bool,
#[arg(long, global = true)]
pub config: Option<PathBuf>,
}
#[derive(Subcommand)]
pub enum Commands {
/// Model management operations
Model {
#[command(subcommand)]
action: ModelCommands,
},
/// Inference operations
Infer(InferenceArgs),
/// Training operations
Train(TrainingArgs),
/// Benchmarking operations
Benchmark {
#[command(subcommand)]
benchmark_type: BenchmarkCommands,
},
/// Configuration management
Config {
#[command(subcommand)]
action: ConfigCommands,
},
}
```
## ๐ Expected Features and Performance
### User Experience Features
| **Interactive Chat** | Real-time chat interface | High |
| **Progress Indicators** | Visual progress for long operations | High |
| **Auto-completion** | Shell auto-completion support | Medium |
| **Configuration Wizard** | Guided setup for new users | Medium |
| **Rich Output** | Colored and formatted output | Medium |
### Performance Characteristics
| **Model Loading** | <5s for 7B model | <1GB overhead |
| **Inference (single)** | <200ms latency | <4GB total |
| **Inference (batch)** | >100 tok/s | <8GB total |
| **Model Conversion** | >1GB/s throughput | <2x model size |
### Platform Support
| **macOS (Apple Silicon)** | Full | All features, Metal acceleration |
| **macOS (Intel)** | Full | All features, CPU only |
| **Linux (x86_64)** | Full | All features, CUDA support |
| **Windows** | Partial | Basic features, CPU only |
## ๐งช Planned Testing Strategy
### Unit Tests
```bash
# Test CLI argument parsing
cargo test --package bitnet-cli cli
# Test command implementations
cargo test --package bitnet-cli commands
# Test configuration management
cargo test --package bitnet-cli config
```
### Integration Tests
```bash
# Test end-to-end workflows
cargo test --package bitnet-cli --test e2e_workflows
# Test model operations
cargo test --package bitnet-cli --test model_operations
# Test inference operations
cargo test --package bitnet-cli --test inference_operations
```
### CLI Tests
```bash
# Test CLI interface
cargo test --package bitnet-cli --test cli_interface
# Test interactive modes
cargo test --package bitnet-cli --test interactive_modes
# Test error handling
cargo test --package bitnet-cli --test error_handling
```
### User Acceptance Tests
```bash
# Test user workflows
cargo test --package bitnet-cli --test user_workflows
# Test documentation examples
cargo test --package bitnet-cli --test doc_examples
# Test performance benchmarks
cargo bench --package bitnet-cli
```
## ๐ง Configuration
### Global Configuration
```yaml
# ~/.bitnet/config.yaml
device:
default: "auto"
fallback: ["cpu"]
memory_fraction: 0.8
inference:
default_batch_size: 1
max_sequence_length: 2048
temperature: 0.8
top_k: 50
top_p: 0.9
training:
default_learning_rate: 1e-4
default_batch_size: 8
checkpoint_interval: 1000
log_interval: 100
output:
format: "auto"
color: true
progress_bars: true
verbosity: "info"
paths:
models_dir: "~/.bitnet/models"
cache_dir: "~/.bitnet/cache"
logs_dir: "~/.bitnet/logs"
```
### Command-Specific Configuration
```yaml
# training_config.yaml
model:
base_model: "microsoft/DialoGPT-medium"
quantization:
bits: 1.58
calibration_samples: 512
training:
learning_rate: 5e-5
batch_size: 16
num_epochs: 3
warmup_steps: 500
optimizer:
type: "adamw"
weight_decay: 0.01
scheduler:
type: "cosine"
warmup_ratio: 0.1
data:
train_file: "train.jsonl"
validation_file: "val.jsonl"
max_length: 1024
logging:
wandb:
project: "bitnet-finetuning"
entity: "my-team"
```
## ๐ Installation and Usage
### Installation
```bash
# Install from crates.io (when published)
cargo install bitnet-cli
# Install from source
git clone https://github.com/bitnet-rust/bitnet-rust.git
cd bitnet-rust
cargo install --path bitnet-cli
# Install with all features
cargo install bitnet-cli --features "metal,cuda,distributed"
```
### Shell Completion
```bash
# Generate shell completions
bitnet completion bash > ~/.bash_completion.d/bitnet
bitnet completion zsh > ~/.zsh/completions/_bitnet
bitnet completion fish > ~/.config/fish/completions/bitnet.fish
# Or install via package managers
brew install bitnet-cli # macOS
apt install bitnet-cli # Ubuntu/Debian
```
### Quick Start
```bash
# Initialize configuration
bitnet config init
# Download a model
bitnet model download microsoft/DialoGPT-medium
# Convert to BitNet format
bitnet model quantize microsoft/DialoGPT-medium --output bitnet-dialog.safetensors
# Start interactive chat
bitnet chat bitnet-dialog.safetensors
# Run benchmarks
bitnet benchmark inference bitnet-dialog.safetensors
```
## ๐ฏ User Experience Goals
### Ease of Use
- **Intuitive Commands**: Natural language-like command structure
- **Helpful Defaults**: Sensible defaults for all operations
- **Clear Error Messages**: Actionable error messages with suggestions
- **Progressive Disclosure**: Simple commands with advanced options
### Performance
- **Fast Startup**: CLI should start quickly (<100ms)
- **Efficient Operations**: Minimize overhead for all operations
- **Parallel Processing**: Utilize multiple cores when possible
- **Memory Efficiency**: Minimize memory usage for CLI operations
### Reliability
- **Robust Error Handling**: Graceful handling of all error conditions
- **Input Validation**: Comprehensive validation of user inputs
- **Safe Operations**: Prevent destructive operations without confirmation
- **Recovery**: Ability to recover from interrupted operations
## ๐ค Contributing
This crate needs complete implementation! Priority areas:
1. **CLI Framework**: Build the basic CLI structure and argument parsing
2. **Model Operations**: Implement model conversion and analysis commands
3. **Inference Interface**: Create interactive and batch inference commands
4. **Training Commands**: Add training and fine-tuning command support
### Getting Started
1. Study CLI design patterns and user experience principles
2. Implement basic CLI structure with clap
3. Add model loading and conversion commands
4. Implement interactive chat interface
5. Add comprehensive help and documentation
### Development Guidelines
1. **User-Centric Design**: Focus on user experience and ease of use
2. **Comprehensive Testing**: Test all CLI interactions and edge cases
3. **Clear Documentation**: Provide clear help text and examples
4. **Performance**: Optimize for fast startup and efficient operations
## ๐ References
- **CLI Design**: [Command Line Interface Guidelines](https://clig.dev/)
- **Clap Documentation**: [Clap Command Line Parser](https://docs.rs/clap/)
- **User Experience**: [The Art of Command Line](https://github.com/jlevy/the-art-of-command-line)
- **BitNet Paper**: [BitNet: Scaling 1-bit Transformers](https://arxiv.org/abs/2310.11453)
## ๐ License
Licensed under the MIT License. See [LICENSE](../LICENSE) for details.