bitfields 0.3.0

Macro for generating flexible bitfields. Useful for low-level code (embedded or emulators).
Documentation

🌻 Bitfields

A Rust create that provides a procedural macro for generating bitfields from structs or custom types, which is useful for defining schemas when working with low-level environments or concepts (e.g. embedded or writing an emulator).

  • Efficient and safe code like you would write by hand.
  • Fully flexible and customizable, you can choose what gets generated.
  • No unsafe code, zero-allocations, const functions, and no runtime dependencies.
  • Constant memory usage regardless of fields as the size of the bitfield is constant to its type.
  • Usable in no_std environments.
  • Compile-time checks for fields, types, and bits bounds checking.
  • Supports most primitive and user-defined custom types.
  • Supports endian conversion (little, big) and field order (msb or lsb).
  • Generates checked versions of field setters to catch overflows.

🔧 Usage

Add the following to your Cargo.toml:

[dependencies]
bitfields = "0.1.0"

🚀 Getting Started

You're emulating the N1nt3nd0 GameChild and come across the Display Control Register (DISPCNT) which is an 8-bit register:

  Bit   Expl.
  0-1   BG Mode                    (0-7=Video Mode)
  2-3   Display BG (0-2)           (0=BGx Off, 1=BGx On)
  4     OBJ Character VRAM Mapping (0=Two dimensional, 1=One dimensional)
  5-7   Always 0x3                 Padding

In table form, the bits are as follows:

You can define the register as follows:

use bitfields::bitfield;

/// Create a struct annotated with the #[bitfield] attribute.
/// By default, the field order is the least significant bit
/// to most significant bit.
#[bitfield(u8)]
#[derive(Copy, Clone)] // Attributes are passed to the struct.
struct DisplayControl {
    /// We specify gg mode occupies the first 2 bits (0-1) of the bitfield
    /// using the `#[bits]` attribute.
    #[bits(2)]
    bg_mode: u8,
    /// Custom type fields must implement the `from_bits` and `into_bits`
    /// functions and declare its size using the `#[bits]` attribute.
    #[bits(2)]
    display_mode: DisplayMode,
    /// We can omit the `#[bits]` attribute for non-custom types, the macro
    /// will assume the number of bits is the size of the field type. Here,
    /// its 1 bit for a `bool` type.
    obj_char_vram_mapping: bool,
    /// Prefixing a field with "_" makes it as a padding field which
    /// is inaccessible. Padding fields are 0 by default, unless a default value
    /// is provided.
    #[bits(3, default = 0x3)]
    _always_0x3_padding: u8,
}

/// Define a custom type that represents the display mode.
struct DisplayMode {
    bg0_on: bool,
    bg1_on: bool,
    bg2_on: bool,
}

/// Implement the `from_bits` and `into_bits` funcs for the custom type.
impl DisplayMode {
    /// Convert bits to the custom type.
    const fn from_bits(bits: u8) -> Self {
        Self {
            bg0_on: bits & 0b001 != 0,
            bg1_on: bits & 0b010 != 0,
            bg2_on: bits & 0b100 != 0,
        }
    }

    /// Convert the custom type into bits.
    const fn into_bits(self) -> u8 {
        (self.bg0_on as u8) | (self.bg1_on as u8) << 1 | (self.bg2_on as u8) << 2
    }
}

// Creating the display mode custom type.
let display_mode = DisplayMode {
    bg0_on: true,
    bg1_on: false,
    bg2_on: true,
};

// Building the display control.
let display_control = DisplayControlBuilder::new()
    .with_bg_mode(0b11)
    .with_display_mode(display_mode)
    .with_obj_char_vram_mapping(true)
    .build();

// Converting into bits.
let val = display_control.into_bits();
assert_eq!(val, 0b01110111);

🤔 What Other Features Does Bitfields Offer?

Bitfields offers a wide range of features to help you define and work with bitfields.

use bitfields::bitfield;

/// All fields in the bitfield must sum up to the number of bits of the bitfield type.
#[bitfield(u64)]
pub struct Bitfield {
    /// Fields without bits specified default to the size of the field type.
    /// 8 bits.
    u8int: u8,
    /// A field can have specified bits, but the bits must be greater than zero
    /// and fit in the field type.
    #[bitfield(4)] // u8 is 8 bits, so 4 bits is valid.
    small_u8int: u8,
    /// A field that is signed, will be sign-extended by the most significant 
    /// bit of its type.
    signed_int: i8,
    /// If you specify bits, the field will be sign-extended by the most significant
    /// bit of the specified bits. In this case, the most significant bit of 4 bits.
    #[bits(4)]
    small_signed_int: i8,
    /// A field can be a bool type.
    bool_field: bool,
    /// A field can have a default value, which must fit in the field type.
    #[bits(default = 0x1F)]
    field_with_default: u8,
    /// A field can have a default value and specified bits. The default value
    /// must fit in the specified bits or a compile error will occur.
    #[bits(4, default = 0xF)] // Default fits in 4 bits.
    field_with_bits_default: u8,
    /// By default, all functions share the same visibility as the bitfield struct.
    /// Fields can have their getters and setters visibility overridden by specifying
    /// the visibility of the field.
    pub pub_field: u8, // Getter and setter are public.
    /// Nested bitfields are supported, but must have their bits specified.
    #[bits(3)]
    nested_field: NestedBitfield,
    /// Custom types are supported, but must have their bits specified and
    /// implement the `from_bits` and `into_bits` functions.
    #[bits(3)]
    custom_type: CustomType,
    /// Fields can have their access restricted. `ro` means read-only, meaning
    /// the field can be read but not written.
    #[bits(5, access = ro)] // Read-only field, no setter.
    read_only: u8,
    /// Fields prefixed with "_" are padding fields, which are inaccessible.
    #[bits(4, default = 0x3)]
    _padding: u8,
}

#[bitfield(u8)]
struct NestedBitfield {
    field: u8
}

/// Custom types must have 2 const functions, `from_bits` and `into_bits` to convert
/// the type to and from bits functions.
#[derive(Default)]
struct CustomType {
    a: u8,
}

impl CustomType {
    /// Make sure the parameter type can fit the specified number of bits. Also,
    /// must be const, we need that extra compile time safety.
    const fn from_bits(bits: u8) -> Self {
        Self {
            a: bits,
        }
    }

    /// Make sure the return type can fit the specified number of bits. Also,
    /// must be const, we need that extra compile time safety.
    const fn into_bits(self) -> u8 {
        self.a
    }
}

// Usage:
// Creates a new bitfield using a builder pattern, unset fields default to 0 
// or their provided default value.
let mut bitfield = BitfieldBuilder::new()
    .with_u8int(5)
    .with_small_u8int(0xF)
    .with_custom_type(CustomType::from_bits(0x3))
    // .with_custom_type(CustomType::default()) // Can pass a [`CustomType`] instance.
    // .with_read_only(0x3) // Compile error, read-only field can't be set.
    // .with__padding(0x3) // Compile error, padding fields are inaccessible.
    .with_signed_int(-5)
    .with_small_signed_int(0xF)
    .build();

// let bitfield = Bitfield::new(); // Bitfield with default values.
// let bitfield = Bitfield::new_without_defaults(); // Bitfield without default values.
// let bitfield = BitfieldBuilder::new_without_defaults(); // Builder without defaults. 

// Accessing fields:
let u8int = bitfield.u8int(); // Getters
let small_u8int = bitfield.small_u8int(); // Signed-types are sign-extended.

// Setting fields:
bitfield.set_u8int(0x3); // Setters
bitfield.checked_set_small_u8int(0xF); // Checked setter, error if value overflow bits.

// Converting to bits:
let bits = bitfield.into_bits();

// Converting from bits:
let bitfield = Bitfield::from_bits(0x3); // Converts from bits
// let bitfield = Bitfield::from_bits_with_defaults(0x3); // Converts, respects defaults.

// Constants:
assert_eq!(Bitfield::U8INT_BITS, 8); // Number of bits of the field.
assert_eq!(Bitfield::U8INT_OFFSET, 0); // The offset of the field in the bitfield.

Bitfield Types

A bitfield can represent unsigned types (u8, u16, u32, u64, u128) up to 128-bits, because Rust was weak and stopped at u128. The field bits of a bitfield must add up to the number of bits of the bitfield type.

use bitfields::bitfield;

#[bitfield(u8)]
struct BitFieldU8 {
    a: u8,
}

#[bitfield(u32)]
struct BitFieldU32 {
    a: u32,
}

#[bitfield(u128)]
struct BitFieldU128 {
    a: u128,
}

Bitfield Field Types

A bitfield field can be any unsigned (u8, u16, u32, u64, u128), signed type (i8, i16, i32, i64, i128), or a custom type that implements the const functions from_bits and into_bits.

use bitfields::bitfield;

#[bitfield(u32)]
struct Bitfield {
    #[bits(default = 0xFF)]
    a: u8,
    #[bits(default = -127)]
    b: i8,
    #[bits(4, default = 9)]
    c_sign_extended: i8, // Sign-extended by the most significant bit of 4 bits.
    #[bits(12, default = CustomType::C)]
    custom_type: CustomType
}

#[derive(Debug, PartialEq)]
enum CustomType {
    A = 0,
    B = 1,
    C = 2,
}

impl CustomType {
    const fn from_bits(bits: u8) -> Self {
        match bits {
            0 => Self::A,
            1 => Self::B,
            2 => Self::C,
            _ => unreachable!(),
        }
    }

    const fn into_bits(self) -> u8 {
        self as u8
    }
}

let bitfield = Bitfield::new();
assert_eq!(bitfield.a(), 0xFF);
assert_eq!(bitfield.b(), -127);
assert_eq!(bitfield.c_sign_extended(), -7);
assert_eq!(bitfield.custom_type(), CustomType::C);

Constructing a Bitfield

A bitfield can be constructed using the new and new_without_defaults constructors. The former initializes the bitfield with default values, while the latter initializes the bitfield without default values, except for padding fields which always keep their default value or 0.

use bitfields::bitfield;

#[bitfield(u32)]
struct Bitfield {
    #[bits(default = 0x12)]
    a: u8,
    #[bits(default = 0x34)]
    b: u8,
    #[bits(default = 0x56)]
    c: u8,
    #[bits(default = 0x78)]
    _d: u8,
}

let bitfield = Bitfield::new();
assert_eq!(bitfield.a(), 0x12);
assert_eq!(bitfield.b(), 0x34);
assert_eq!(bitfield.c(), 0x56);
assert_eq!(bitfield.into_bits(), 0x78563412);

let bitfield_without_defaults = Bitfield::new_without_defaults();
assert_eq!(bitfield_without_defaults.a(), 0);
assert_eq!(bitfield_without_defaults.b(), 0);
assert_eq!(bitfield_without_defaults.c(), 0);
assert_eq!(bitfield_without_defaults.into_bits(), 0x78000000);

Bitfield Conversions

A bitfield can be converted from bits using the from_bits or from_bits_with_defaults functions. The former ignores default values, while the latter respects them. Padding fields are always 0 or their default value. The bitfield can also be converted to bits using the into_bits function. The From trait is also implemented between the bitfield and the bitfield type and operates the same as from_bits.

use bitfields::bitfield;

#[bitfield(u32)]
#[derive(Copy, Clone)]
struct Bitfield {
    #[bits(default = 0x12)]
    a: u8,
    #[bits(8)]
    b: CustomType,
    c: u8,
    #[bits(default = 0x78)]
    _d: u8,
}

#[derive(Debug, PartialEq)]
enum CustomType {
    A = 0,
    B = 1,
    C = 2,
}

impl CustomType {
    const fn from_bits(bits: u8) -> Self {
        match bits {
            1 => Self::A,
            2 => Self::B,
            3 => Self::C,
            _ => Self::A,
        }
    }
    
    const fn into_bits(self) -> u8 {
        self as u8
    }
}

let bitfield = Bitfield::from_bits(0x11223344);
assert_eq!(bitfield.a(), 0x44);
assert_eq!(bitfield.b(), CustomType::A);
assert_eq!(bitfield.c(), 0x22);
let val = bitfield.into_bits();
assert_eq!(val, 0x78220044);

let bitfield_respect_defaults = Bitfield::from_bits_with_defaults(0x11223344);
assert_eq!(bitfield_respect_defaults.a(), 0x12); // Default value respected
assert_eq!(bitfield_respect_defaults.b(), CustomType::A);
assert_eq!(bitfield_respect_defaults.c(), 0x22);
let val = bitfield_respect_defaults.into_bits();
assert_eq!(val, 0x78220012);

// From trait
let val: u32 = bitfield.into();
assert_eq!(val, 0x78220044);
let bitfield: Bitfield = val.into();
assert_eq!(bitfield.into_bits(), 0x78220044);

Conversion Endianess

Sometimes the outside world is outside our control, like how systems store or expect data endian. Luckily, the endian of the bitfield conversions can be controlled by specifying the #[bitfield(from_endian = x, into_endian = x)] args. The possible endians are little or big. By default, the endian of both is big.

use bitfields::bitfield;

// We are working with a system that stores data in little-endian, we
// set the from_endian to little for the proper representation.
//
// The system expects the data it stores in big-endian, we set the 
// into_endian to big-endian for converting into the proper representation.
#[bitfield(u32, from_endian = little, into_endian = big)]
pub struct Bitfield {
    a: u8,
    b: u8,
    c: u8,
    d: u8,
}

// The host device stored the data 0x12345678 in little-endian memory 
// as [0x78, 0x56, 0x34, 0x12].
let bitfield = Bitfield::from_bits(0x78563412);

assert_eq!(bitfield.a(), 0x78);
assert_eq!(bitfield.b(), 0x56);
assert_eq!(bitfield.c(), 0x34);
assert_eq!(bitfield.d(), 0x12);
assert_eq!(bitfield.into_bits(), 0x12345678);

Field Order

By default, fields are ordered from the least significant bit (lsb) to the most significant bit (msb). The order can be changed by specifying the #[bitfield(order = x)] arg on the bitfield struct. There are two field orderings, lsb and msb.

use bitfields::bitfield;

#[bitfield(u32, order = msb)]
struct Bitfield {
    #[bits(default = 0x12)]
    a: u8,
    #[bits(default = 0x34)]
    b: u8,
    #[bits(default = 0x56)]
    c: u8,
    #[bits(default = 0x78)]
    d: u8,
}

let bitfield = Bitfield::new();
assert_eq!(bitfield.a(), 0x12);
assert_eq!(bitfield.b(), 0x34);
assert_eq!(bitfield.c(), 0x56);
assert_eq!(bitfield.d(), 0x78);
let val = bitfield.into_bits();

//                .- a
//                |    .- b
//                |    | .- c
//                |    | |  .- d
assert_eq!(val, 0x12_34_56_78);
assert_eq!(Bitfield::A_OFFSET, 24); // Offset of the a field in the bitfield.

Field Access

Field access can be controlled by specifying the #[bits(access = x)] arg on a field. There are four accesses:

  • rw - Read and write access (default)
  • ro - Read-only access.
  • wo - Write-only access.
  • none - No access.
use bitfields::bitfield;

#[bitfield(u32)]
struct Bitfield {
    read_write: u8,
    #[bits(access = ro)]
    read_only: u8,
    #[bits(access = wo)]
    write_only: u8,
    #[bits(default = 0xFF, access = none)]
    none: u8,
}

let mut bitfield = BitfieldBuilder::new()
    .with_read_write(0x12)
    // .with_read_only(0x34) // Compile error, read-only field can't be set.
    .with_write_only(0x56)
    // .with_none(0x78) // Compile error, none field can't be set.
    .build();
bitfield.set_read_write(0x12);
// bitfield.set_read_only(0x34); // Compile error, read-only field can't be set.
bitfield.set_write_only(0x56);
// bitfield.set_none(0x78); // Compile error, none field can't be set.

assert_eq!(bitfield.read_write(), 0x12);
assert_eq!(bitfield.read_only(), 0);
// assert_eq!(bitfield.write_only(), 0x56); // Compile error, write-only can't be read.
// assert_eq!(bitfield.none(), 0xFF); // Compile error, none field can't be accessed.
assert_eq!(bitfield.into_bits(), 0xFF560012); // All fields exposed when converted to bits.

Checked Setters

Normally, when a field is set, the value is truncated to the number of bits of the field. Fields also have checked setters that returns an error if the value overflows the number of bits of the field.

use bitfields::bitfield;

#[bitfield(u16)]
struct Bitfield {
    a: u8,
    #[bits(4)]
    b: u8,
    #[bits(4)]
    _padding: u8,
}

let mut bitfield = Bitfield::new();
bitfield.set_a(0xFF);
bitfield.set_b(0x12); // Truncated to 4 bits.
assert_eq!(bitfield.a(), 0xFF);
assert_eq!(bitfield.b(), 0x2);

let res = bitfield.checked_set_b(0x12); // Error, value overflows bits.
assert!(res.is_err());

Padding Fields

Fields prefixed with an underscore _ are padding fields, which are inaccessible. Meaning the field is always 0/false or a default value. They are useful for padding the bits of the bitfield.

use bitfields::bitfield;

#[bitfield(u16)]
struct Bitfield {
    a: u8,
    #[bits(default = 0xFF)]
    _padding: u8, // Fills the remaining bits of the u16.
}

let bitfield = Bitfield::new();
assert_eq!(bitfield.a(), 0);
// assert_eq!(bitfield._padding(), 0xFF00); // Compile error, padding inaccessible.
// bitfield.set__padding(0xFF); // Compile error, padding fields are inaccessible.
assert_eq!(bitfield.into_bits(), 0xFF00); // All fields exposed when converted to bits.

Field Constants

Fields with read or write access have constants generated for their number of bits and offset in the bitfield.

use bitfields::bitfield;

#[bitfield(u32)]
struct Bitfield {
    #[bits(default = 0x12)]
    a: u8,
    #[bits(default = 0x34)]
    b: u8,
    #[bits(default = 0x56)]
    c: u8,
    #[bits(default = 0x78)]
    d: u8,
}

assert_eq!(Bitfield::A_BITS, 8); // Number of bits of the  afield.
assert_eq!(Bitfield::A_OFFSET, 0); // The offset of the a field in the bitfield.
assert_eq!(Bitfield::B_BITS, 8); // Number of bits of the b field.
assert_eq!(Bitfield::B_OFFSET, 8); // The offset of the b field in the bitfield.
assert_eq!(Bitfield::C_BITS, 8); // Number of bits of c the field.
assert_eq!(Bitfield::C_OFFSET, 16); // The offset of the c field in the bitfield.
assert_eq!(Bitfield::D_BITS, 8); // Number of bits of the d field.
assert_eq!(Bitfield::D_OFFSET, 24); // The offset of the d field in the bitfield.

Debug Implementation

A debug implementation is generated for the bitfield, which prints the fields and their values.

use bitfields::bitfield;

#[bitfield(u32)]
struct Bitfield {
    #[bits(default = 0x12)]
    a: u8,
    #[bits(default = 0x34)]
    b: u8,
    #[bits(default = 0x56)]
    c: u8,
    #[bits(default = 0x78)]
    d: u8,
}

let bitfield = Bitfield::new();

assert_eq!(format!("{:?}", bitfield), "Bitfield { d: 120, c: 86, b: 52, a: 18 }");

Passing Attributes

Attributes below the #[bitfield] attribute are passed to the generated struct.

use bitfields::bitfield;

#[bitfield(u32)]
#[derive(Copy, Clone)]
struct Bitfield {
    a: u32,
}

Complete Generation Control

You have complete control over what gets generated by the bitfield macro. When your deploying to a resource-constrained environment, you can generate only the necessary functions or implementations. You can disable generation by passing false to its attribute arg.

The #[bitfield] args that control generation are:

  • #[bitfield(new = true)] - Generates the new and new_without_defaults constructor.
  • #[bitfield(from_bits = true)] - Generates the from_bits and from_bits_with_defaults functions.
  • #[bitfield(into_bits = true)] - Generates the into_bits function.
  • #[bitfield(from = true)] - Generates the From trait implementation.
  • #[bitfield(debug = true)] - Generates the Debug trait implementation.
  • #[bitfield(default = true)] - Generates the Default trait implementation
  • #[bitfield(builder = true)] - Generates the builder implementation.

⚖️ License

Distributed under the MIT License. See LICENSE for more information.

🤝 Contributing

Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the MIT license, shall be licensed as above, without any additional terms or conditions.

🥶 Employment Disclaimer

As of Dec 2024, I am a Google employee; "Bitfields" is my own work, not affiliated with Google, its subsidiaries, nor endorsing any Google-owned products or tools. "Bitfields" was written without any proprietary knowledge, tools, or resources of Google.

💯 Acknowledgments