1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
crate::ix!();
pub fn repeat(
s: &mut Scheduler,
f: SchedulerFunction,
delta: Duration /* millis */) {
todo!();
/*
f();
s.scheduleFromNow([=, &s] { Repeat(s, f, delta); }, delta);
*/
}
//-------------------------------------------[.cpp/bitcoin/src/scheduler.h]
//-------------------------------------------[.cpp/bitcoin/src/scheduler.cpp]
/**
| Simple class for background tasks that
| should be run periodically or once "after
| a while"
|
| Usage:
|
| -----------
| @code
|
| CScheduler* s = new CScheduler();
| s->scheduleFromNow(doSomething, std::chrono::milliseconds{11}); // Assuming a: c_void doSomething() { }
| s->scheduleFromNow([=] { this->func(argument); }, std::chrono::milliseconds{3});
| std::thread* t = new std::thread([&] { s->serviceQueue(); });
|
| ... then at program shutdown, make sure to call stop() to clean up the thread(s) running serviceQueue:
| s->stop();
| t->join();
| delete t;
| delete s; // Must be done after thread is interrupted/joined.
|
*/
pub struct Scheduler {
service_thread: Thread,
new_task_mutex: RefCell<Mutex<SchedulerInner>>,
new_task_scheduled: Condvar,
}
pub struct SchedulerInner {
task_queue: MultiMap<TimePoint,SchedulerFunction>,
n_threads_servicing_queue: i32, // default = { 0 }
stop_requested: bool, // default = { false }
stop_when_empty: bool, // default = { false }
}
pub type SchedulerFunction = Box<dyn FnMut() -> ()>;
impl Drop for Scheduler {
fn drop(&mut self) {
todo!();
/*
assert(nThreadsServicingQueue == 0);
if (stopWhenEmpty) assert(taskQueue.empty());
*/
}
}
impl Scheduler {
/**
| Call f once after the delta has passed
|
*/
pub fn schedule_from_now(&mut self,
f: SchedulerFunction,
delta: Duration /* millis */) {
todo!();
/*
schedule(std::move(f), std::chrono::system_clock::now() + delta);
*/
}
/**
| Tell any threads running serviceQueue
| to stop as soon as the current task is
| done
|
*/
pub fn stop(&mut self) {
todo!();
/*
[&]() { LOCK(newTaskMutex); stopRequested = true }()
;
newTaskScheduled.notify_all();
if (m_service_thread.joinable()) m_service_thread.join();
*/
}
/**
| Tell any threads running serviceQueue
| to stop when there is no work left to be
| done
|
*/
pub fn stop_when_drained(&mut self) {
todo!();
/*
[&]() { LOCK(newTaskMutex); stopWhenEmpty = true }()
;
newTaskScheduled.notify_all();
if (m_service_thread.joinable()) m_service_thread.join();
*/
}
#[EXCLUSIVE_LOCKS_REQUIRED(newTaskMutex)]
pub fn should_stop(&self) -> bool {
todo!();
/*
return stopRequested || (stopWhenEmpty && taskQueue.empty());
*/
}
/**
| Services the queue 'forever'. Should
| be run in a thread.
|
*/
pub fn service_queue(&mut self) {
todo!();
/*
SetSyscallSandboxPolicy(SyscallSandboxPolicy::SCHEDULER);
WAIT_LOCK(newTaskMutex, lock);
++nThreadsServicingQueue;
// newTaskMutex is locked throughout this loop EXCEPT
// when the thread is waiting or when the user's function
// is called.
while (!shouldStop()) {
try {
while (!shouldStop() && taskQueue.empty()) {
// Wait until there is something to do.
newTaskScheduled.wait(lock);
}
// Wait until either there is a new task, or until
// the time of the first item on the queue:
while (!shouldStop() && !taskQueue.empty()) {
std::chrono::system_clock::time_point timeToWaitFor = taskQueue.begin()->first;
if (newTaskScheduled.wait_until(lock, timeToWaitFor) == std::cv_status::timeout) {
break; // Exit loop after timeout, it means we reached the time of the event
}
}
// If there are multiple threads, the queue can empty while we're waiting (another
// thread may service the task we were waiting on).
if (shouldStop() || taskQueue.empty())
continue;
SchedulerFunction f = taskQueue.begin()->second;
taskQueue.erase(taskQueue.begin());
{
// Unlock before calling f, so it can reschedule itself or another task
// without deadlocking:
REVERSE_LOCK(lock);
f();
}
} catch (...) {
--nThreadsServicingQueue;
throw;
}
}
--nThreadsServicingQueue;
newTaskScheduled.notify_one();
*/
}
/**
| Call func at/after time t
|
*/
pub fn schedule(&mut self,
f: SchedulerFunction,
t: TimePoint) {
todo!();
/*
{
LOCK(newTaskMutex);
taskQueue.insert(std::make_pair(t, f));
}
newTaskScheduled.notify_one();
*/
}
/**
| Mock the scheduler to fast forward in
| time.
|
| Iterates through items on taskQueue
| and reschedules them to be delta_seconds
| sooner.
|
*/
pub fn mock_forward(&mut self, delta_seconds: Duration /* seconds */) {
todo!();
/*
assert(delta_seconds > 0s && delta_seconds <= 1h);
{
LOCK(newTaskMutex);
// use temp_queue to maintain updated schedule
std::multimap<std::chrono::system_clock::time_point, Function> temp_queue;
for (const auto& element : taskQueue) {
temp_queue.emplace_hint(temp_queue.cend(), element.first - delta_seconds, element.second);
}
// point taskQueue to temp_queue
taskQueue = std::move(temp_queue);
}
// notify that the taskQueue needs to be processed
newTaskScheduled.notify_one();
*/
}
/**
| Repeat f until the scheduler is stopped.
| First run is after delta has passed once.
|
| The timing is not exact: Every time f
| is finished, it is rescheduled to run
| again after delta. If you need more accurate
| scheduling, don't use this method.
|
*/
pub fn schedule_every(&mut self,
f: SchedulerFunction,
delta: Duration /* millis */) {
todo!();
/*
scheduleFromNow([=] { Repeat(*this, f, delta); }, delta);
*/
}
/**
| Returns number of tasks waiting to be
| serviced, and first and last task times
|
*/
pub fn get_queue_info(&self,
first: &mut TimePoint,
last: &mut TimePoint) -> usize {
todo!();
/*
LOCK(newTaskMutex);
size_t result = taskQueue.size();
if (!taskQueue.empty()) {
first = taskQueue.begin()->first;
last = taskQueue.rbegin()->first;
}
return result;
*/
}
/**
| Returns true if there are threads actively
| running in serviceQueue()
|
*/
pub fn are_threads_servicing_queue(&self) -> bool {
todo!();
/*
LOCK(newTaskMutex);
return nThreadsServicingQueue;
*/
}
}
/**
| Class used by CScheduler clients which
| may schedule multiple jobs which are
| required to be run serially.
|
| Jobs may not be run on the same thread,
| but no two jobs will be executed at the
| same time and memory will be release-acquire
| consistent (the scheduler will internally
| do an acquire before invoking a callback
| as well as a release at the end).
|
| In practice this means that a callback
|
| B() will be able to observe all of the
| effects of callback A() which executed
| before it.
|
*/
pub struct SingleThreadedSchedulerClient {
pscheduler: *mut Scheduler,
cs_callbacks_pending: parking_lot::ReentrantMutex<single_threaded_scheduler_client::Inner>,
}
pub mod single_threaded_scheduler_client {
use super::*;
pub struct Inner {
callbacks_pending: LinkedList<fn() -> ()>,
are_callbacks_running: bool, // default = false
}
}
impl SingleThreadedSchedulerClient {
pub fn new(pscheduler_in: *mut Scheduler) -> Self {
todo!();
/*
: pscheduler(pschedulerIn),
*/
}
pub fn maybe_schedule_process_queue(&mut self) {
todo!();
/*
{
LOCK(m_cs_callbacks_pending);
// Try to avoid scheduling too many copies here, but if we
// accidentally have two ProcessQueue's scheduled at once its
// not a big deal.
if (m_are_callbacks_running) return;
if (m_callbacks_pending.empty()) return;
}
m_pscheduler->schedule(std::bind(&SingleThreadedSchedulerClient::ProcessQueue, this), std::chrono::system_clock::now());
*/
}
pub fn process_queue(&mut self) {
todo!();
/*
std::function<c_void()> callback;
{
LOCK(m_cs_callbacks_pending);
if (m_are_callbacks_running) return;
if (m_callbacks_pending.empty()) return;
m_are_callbacks_running = true;
callback = std::move(m_callbacks_pending.front());
m_callbacks_pending.pop_front();
}
// RAII the setting of fCallbacksRunning and calling MaybeScheduleProcessQueue
// to ensure both happen safely even if callback() throws.
struct RAIICallbacksRunning {
SingleThreadedSchedulerClient* instance;
explicit RAIICallbacksRunning(SingleThreadedSchedulerClient* _instance) : instance(_instance) {}
~RAIICallbacksRunning()
{
{
LOCK(instance->m_cs_callbacks_pending);
instance->m_are_callbacks_running = false;
}
instance->MaybeScheduleProcessQueue();
}
} raiicallbacksrunning(this);
callback();
*/
}
/**
| Add a callback to be executed. Callbacks
| are executed serially and memory is
| release-acquire consistent between
| callback executions.
|
| Practically, this means that callbacks
| can behave as if they are executed in
| order by a single thread.
|
*/
pub fn add_to_process_queue(&mut self, func: fn() -> ()) {
todo!();
/*
assert(m_pscheduler);
{
LOCK(m_cs_callbacks_pending);
m_callbacks_pending.emplace_back(std::move(func));
}
MaybeScheduleProcessQueue();
*/
}
/**
| Processes all remaining queue members
| on the calling thread, blocking until
| queue is empty
|
| Must be called after the CScheduler
| has no remaining processing threads!
|
*/
pub fn empty_queue(&mut self) {
todo!();
/*
assert(!m_pscheduler->AreThreadsServicingQueue());
bool should_continue = true;
while (should_continue) {
ProcessQueue();
LOCK(m_cs_callbacks_pending);
should_continue = !m_callbacks_pending.empty();
}
*/
}
pub fn callbacks_pending(&mut self) -> usize {
todo!();
/*
LOCK(m_cs_callbacks_pending);
return m_callbacks_pending.size();
*/
}
}