biometal 1.10.0

ARM-native bioinformatics library with streaming architecture and evidence-based optimization
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
<div align="center">
  <img src="biometal_logo.png" alt="biometal logo" width="200"/>
</div>

<h1 align="center">biometal</h1>

<p align="center">
<strong>ARM-native bioinformatics library with streaming architecture and evidence-based optimization</strong>
</p>

<p align="center">
<a href="https://crates.io/crates/biometal"><img src="https://img.shields.io/crates/v/biometal.svg" alt="Crates.io"></a>
<a href="https://docs.rs/biometal"><img src="https://docs.rs/biometal/badge.svg" alt="Documentation"></a>
<a href="https://pypi.org/project/biometal-rs/"><img src="https://img.shields.io/pypi/v/biometal-rs.svg" alt="PyPI"></a>
<a href="https://pypi.org/project/biometal-rs/"><img src="https://img.shields.io/pypi/pyversions/biometal-rs.svg" alt="Python"></a>
<a href="https://deepwiki.com/shandley/biometal"><img src="https://deepwiki.com/badge.svg" alt="Ask DeepWiki"></a>
<a href="https://github.com/shandley/biometal#license"><img src="https://img.shields.io/crates/l/biometal.svg" alt="License"></a>
</p>

---

## What Makes biometal Different?

Stream data directly from networks and analyze terabyte-scale datasets on consumer hardware without downloading.

- **Constant ~5 MB memory** regardless of dataset size (99.5% reduction)
- **16-25× speedup** using ARM NEON SIMD on Apple Silicon
- **Network streaming** from HTTP/HTTPS sources (no download needed)
- **Evidence-based** design (1,357 experiments, 40,710 measurements)

---

## 🎉 NEW in v1.10.0: Extended Format Support

biometal now supports **12+ bioinformatics file formats** with production-ready streaming parsers:

**Sequences & Reads**:
- **FASTQ/FASTA**: Read sequences with quality scores
- **BAM/SAM**: Binary alignment format with indexing (BAI)

**Annotations & Features**:
- **BED/narrowPeak**: Genomic intervals and ChIP-seq peaks (ENCODE)
- **GFF3**: Hierarchical gene features (genes, mRNAs, exons, CDS)
- **GTF**: Gene annotations for RNA-seq (GENCODE, Ensembl) **[NEW]**

**Variants & Alignments**:
- **VCF**: Genetic variants (SNPs, indels, structural variants)
- **PAF**: minimap2 pairwise alignments (long-read analysis) **[NEW]**

**Graphs & Assembly**:
- **GFA**: Assembly graphs (pangenomes, read overlap graphs)

**Indices**:
- **FAI**: FASTA index for O(1) sequence lookup
- **TBI**: Tabix index for O(log n) region queries

All formats support:
- ✅ Streaming architecture (constant ~5 MB memory)
- ✅ Automatic gzip decompression (`.gz` files)
- ✅ Python bindings with optimized memory usage
- ✅ Real-world validation (ENCODE, UCSC, Ensembl, 1000 Genomes)

---

## Quick Start

### Installation

**Rust:**
```toml
[dependencies]
biometal = "1.10"
```

**Python:**
```bash
pip install biometal-rs  # Install
python -c "import biometal; print(biometal.__version__)"  # Test
```

> **Note**: Package is `biometal-rs` on PyPI, but imports as `biometal` in Python.

### Basic Usage

**Rust:**
```rust
use biometal::FastqStream;

// Stream FASTQ with constant memory (~5 MB)
let stream = FastqStream::from_path("dataset.fq.gz")?;

for record in stream {
    let record = record?;
    // Process one record at a time
}
```

**Python:**
```python
import biometal

# Stream FASTQ with constant memory (~5 MB)
stream = biometal.FastqStream.from_path("dataset.fq.gz")

for record in stream:
    # ARM NEON accelerated (16-25× speedup)
    gc = biometal.gc_content(record.sequence)
    counts = biometal.count_bases(record.sequence)
    mean_q = biometal.mean_quality(record.quality)
```

---

## 📚 Documentation

### Start Here
- **📘 [User Guide]docs/USER_GUIDE.md** - Comprehensive guide: installation, core concepts, common workflows, troubleshooting, and migration from pysam/samtools **(NEW - v1.6.0)**

### In-Depth Resources
- **📖 [DeepWiki AI Docs]https://deepwiki.com/shandley/biometal** - AI-assisted documentation with Q&A
- **📓 [Interactive Tutorials]notebooks/** - Jupyter notebooks with real workflows
- **🦀 [API Reference]https://docs.rs/biometal** - Full Rust documentation
- **🐍 [Python Guide]docs/PYTHON.md** - Python-specific documentation
- **🧬 [BAM API Reference]docs/BAM_API.md** - Complete BAM/SAM parser API (v1.4.0)
- **[BAM Performance Guide]docs/BAM_PERFORMANCE.md** - Benchmarks and optimization (v1.4.0)
- **📐 [Architecture]docs/ARCHITECTURE.md** - Technical design details
- **[FAQ]FAQ.md** - Frequently asked questions

---

## 📓 Interactive Tutorials

Learn biometal through hands-on Jupyter notebooks (5 complete, ~2.5 hours):

| Notebook | Duration | Topics |
|----------|----------|--------|
| [01. Getting Started]notebooks/01_getting_started.ipynb | 15-20 min | Streaming, GC content, quality analysis |
| [02. Quality Control]notebooks/02_quality_control_pipeline.ipynb | 30-40 min | Trimming, filtering, masking (v1.2.0) |
| [03. K-mer Analysis]notebooks/03_kmer_analysis.ipynb | 30-40 min | ML preprocessing, DNABert (v1.1.0) |
| [04. Network Streaming]notebooks/04_network_streaming.ipynb | 30-40 min | HTTP streaming, public data (v1.0.0) |
| [05. BAM Alignment Analysis]notebooks/05_bam_alignment_analysis.ipynb | 30-40 min | BAM parsing, 4× speedup, filtering (v1.2.0+) |
| [06. BAM Production Workflows]notebooks/06_bam_production_workflows.ipynb | 45-60 min | Tag parsing, QC statistics, production pipelines (v1.4.0) |

👉 **[Browse all tutorials →](notebooks/README.md)**

---

## 🚀 Key Features

### Streaming Architecture
- **Constant ~5 MB memory** regardless of dataset size
- Analyze 5TB datasets on laptops without downloading
- 99.5% memory reduction vs. traditional approaches

### ARM-Native Performance
- **16-25× speedup** using ARM NEON SIMD
- Optimized for Apple Silicon (M1/M2/M3/M4)
- Automatic scalar fallback on x86_64

### Network Streaming
- Stream directly from HTTP/HTTPS (no download)
- Smart LRU caching + background prefetching
- Access public data (ENA, S3, GCS, Azure)

### Operations Library
- **Core operations**: GC content, base counting, quality scores
- **K-mer operations**: Extraction, minimizers, spectrum (v1.1.0)
- **QC operations**: Trimming, filtering, masking (v1.2.0)
- **BAM/SAM parser**: Production-ready with 8.4× speedup via parallel BGZF + NEON + cloudflare_zlib
  - 5.82 million records/sec throughput
  - 92.0 MiB/s compressed file processing (+67% from cloudflare_zlib in v1.7.0)
  - Constant ~5 MB memory (streams terabyte-scale alignments)
  - **Python bindings (v1.3.0)**: CIGAR operations, SAM writing, alignment metrics
  - **Production polish (v1.4.0)**: Tag convenience methods, statistics functions
    - 6 tag accessors: `edit_distance()`, `alignment_score()`, `read_group()`, etc.
    - 4 statistics functions: `insert_size_distribution()`, `edit_distance_stats()`, `strand_bias()`, `alignment_length_distribution()`
  - **NEON optimization (v1.5.0)**: ARM SIMD sequence decoding (4.62× faster)
  - **BAI index (v1.6.0)**: Indexed region queries with 1.68-500× speedup
    - O(log n) random access to BAM files
    - Near-zero overhead (<1ms index loading)
    - Speedup scales with file size (10-500× for 1-10 GB files)
- **Format Library (v1.8.0)**: Production-ready parsers for genomic annotation and assembly formats
  - **BED (Browser Extensible Data)**: Genomic intervals with streaming architecture
    - BED3/6/12 format support
    - 0-based half-open coordinate system
    - Constant memory (~5 MB) for terabyte-scale peak files
  - **GFA (Graphical Fragment Assembly)**: Assembly graph format
    - Segment, Link, Path record types
    - Graph connectivity validation
    - Streaming architecture for large assembly graphs
  - **VCF (Variant Call Format)**: Genetic variant data
    - VCF 4.2 specification compliance
    - Header parsing with sample/contig/INFO extraction
    - SNP/indel classification
    - Multi-allelic variant support
  - **GFF3 (General Feature Format)**: Hierarchical gene annotations
    - 1-based inclusive coordinate system
    - Parent-child relationship tracking (gene → mRNA → exon/CDS)
    - Attribute parsing with convenience methods
    - Coordinate conversion to BED (0-based)
  - **Testing**: 23 property-based tests + 6 real-world integration tests
  - **Python bindings**: Full streaming API for all formats
- **60+ Python functions** for bioinformatics workflows

---

## Performance Highlights

| Operation | Scalar | Optimized | Speedup |
|-----------|--------|-----------|---------|
| Base counting | 315 Kseq/s | 5,254 Kseq/s | **16.7× (NEON)** |
| GC content | 294 Kseq/s | 5,954 Kseq/s | **20.3× (NEON)** |
| Quality filter | 245 Kseq/s | 6,143 Kseq/s | **25.1× (NEON)** |
| **BAM parsing** | **~11 MiB/s** | **92.0 MiB/s** | **8.4× (BGZF + NEON + cloudflare_zlib v1.7.0)** |

| Dataset Size | Traditional | biometal | Reduction |
|--------------|-------------|----------|-----------|
| 100K sequences | 134 MB | 5 MB | 96.3% |
| 1M sequences | 1,344 MB | 5 MB | 99.5% |
| **5TB dataset** | **5,000 GB** | **5 MB** | **99.9999%** |

**📊 [Comprehensive Benchmark Comparison vs samtools/pysam →](benchmarks/comparison/BENCHMARK_COMPARISON.md)**

---

## Platform Support

| Platform | Performance | Tests | Status |
|----------|-------------|-------|--------|
| **Mac ARM** (M1-M4) | **16-25× speedup** | ✅ 551/551 | Optimized |
| **AWS Graviton** | 6-10× speedup | ✅ 551/551 | Portable |
| **Linux x86_64** | 1× (scalar) | ✅ 551/551 | Portable |

*Test count: 551 library tests (including 65 new tests for GTF, PAF, narrowPeak) + 23 property-based tests*

---

## Evidence-Based Design

biometal's design is grounded in comprehensive experimental validation:

- **1,357 experiments** (40,710 measurements, N=30)
- **Statistical rigor** (95% CI, Cohen's d effect sizes)
- **Full methodology**: [apple-silicon-bio-bench]https://github.com/shandley/apple-silicon-bio-bench
- **6 optimization rules** documented in [OPTIMIZATION_RULES.md]OPTIMIZATION_RULES.md

---

## Roadmap

**v1.0.0** (Released Nov 5, 2025) ✅ - Core library + network streaming
**v1.1.0** (Released Nov 6, 2025) ✅ - K-mer operations
**v1.2.0** (Released Nov 6, 2025) ✅ - Python bindings for Phase 4 QC
**BAM/SAM** (Integrated Nov 8, 2025) ✅ - Native streaming alignment parser with parallel BGZF (4× speedup)
**v1.3.0** (Released Nov 9, 2025) ✅ - Python BAM bindings with CIGAR operations and SAM writing
**v1.4.0** (Released Nov 9, 2025) ✅ - BAM tag convenience methods and statistics functions
**v1.5.0** (Released Nov 9, 2025) ✅ - ARM NEON sequence decoding (+27.5% BAM parsing speedup)
**v1.6.0** (Released Nov 10, 2025) ✅ - BAI index support (indexed region queries, 1.68-500× speedup)
**v1.7.0** (Released Nov 13, 2025) ✅ - cloudflare_zlib backend (1.67× decompression, 2.29× compression speedups)
**v1.8.0** (Released Nov 13, 2025) ✅ - Format library (BED, GFA, VCF, GFF3) with property-based testing
  - 4 production-ready format parsers with streaming architecture
  - 23 property-based tests + 6 real-world integration tests
  - Tested against ENCODE, UCSC, Ensembl, 1000 Genomes data
  - Full Python bindings for all formats

**Next** (Planned):
- CSI index support (for references >512 Mbp)
- Extended tag parsing (full type support)
- Additional alignment statistics
- Community feedback & benchmarking

**Future** (Community Driven):
- Extended operations (alignment, assembly)
- Additional formats (BCF, CRAM)
- Metal GPU acceleration (Mac-specific)

See [CHANGELOG.md](CHANGELOG.md) for detailed release notes.

---

## Mission: Democratizing Bioinformatics

biometal addresses barriers that lock researchers out of genomics:

1. **Economic**: Consumer ARM laptops ($1,400) deliver production performance
2. **Environmental**: ARM efficiency reduces carbon footprint
3. **Portability**: Works across ARM ecosystem (Mac, Graviton, Ampere, RPi)
4. **Data Access**: Analyze 5TB datasets on 24GB laptops without downloading

---

## Example Use Cases

### Quality Control Pipeline

```python
import biometal

stream = biometal.FastqStream.from_path("raw_reads.fq.gz")

for record in stream:
    # Trim low-quality ends
    trimmed = biometal.trim_quality_window(record, min_quality=20, window_size=4)

    # Length filter
    if biometal.meets_length_requirement(trimmed, min_len=50, max_len=150):
        # Mask remaining low-quality bases
        masked = biometal.mask_low_quality(trimmed, min_quality=20)

        # Check masking rate
        mask_rate = biometal.count_masked_bases(masked) / len(masked.sequence)
        if mask_rate < 0.1:
            # Pass QC - process further
            pass
```

### K-mer Extraction for ML

```python
import biometal

# Extract k-mers for DNABert preprocessing
stream = biometal.FastqStream.from_path("dataset.fq.gz")

for record in stream:
    # Extract overlapping k-mers (k=6 typical for DNABert)
    kmers = biometal.extract_kmers(record.sequence, k=6)

    # Format for transformer models
    kmer_string = " ".join(kmer.decode() for kmer in kmers)

    # Feed to DNABert - constant memory!
    model.process(kmer_string)
```

### Network Streaming

```python
import biometal

# Stream from HTTP without downloading
# Works with ENA, S3, GCS, Azure public data
url = "https://example.com/dataset.fq.gz"
stream = biometal.FastqStream.from_path(url)

for record in stream:
    # Analyze directly - no download needed!
    # Memory: constant ~5 MB
    gc = biometal.gc_content(record.sequence)
```

### BAM Alignment Analysis (v1.4.0)

```python
import biometal

# Stream BAM file with constant memory (~5 MB)
reader = biometal.BamReader.from_path("alignments.bam")

for record in reader:
    # Access alignment details
    print(f"{record.name}: MAPQ={record.mapq}, pos={record.position}")

    # NEW v1.4.0: Tag convenience methods
    edit_dist = record.edit_distance()  # NM tag
    align_score = record.alignment_score()  # AS tag
    read_group = record.read_group()  # RG tag
    print(f"  Edit distance: {edit_dist}, Score: {align_score}, RG: {read_group}")

    # CIGAR operations (v1.3.0)
    for op in record.cigar:
        if op.is_insertion() and op.length >= 5:
            print(f"  Found {op.length}bp insertion")

# NEW v1.4.0: Built-in statistics functions
# Insert size distribution (paired-end QC)
dist = biometal.insert_size_distribution("alignments.bam")
print(f"Mean insert size: {sum(s*c for s,c in dist.items())/sum(dist.values()):.1f}bp")

# Edit distance statistics (alignment quality)
stats = biometal.edit_distance_stats("alignments.bam")
print(f"Mean edit distance: {stats['mean']:.2f} mismatches/read")

# Strand bias (variant calling QC)
bias = biometal.strand_bias("alignments.bam", reference_id=0, position=1000)
print(f"Strand bias at chr1:1000: {bias['ratio']:.2f}:1")

# Alignment length distribution (RNA-seq QC)
lengths = biometal.alignment_length_distribution("alignments.bam")
print(f"Intron-spanning reads: {sum(c for l,c in lengths.items() if l > 1000)}")
```

### BAI Indexed Region Queries (v1.6.0)

```python
import biometal

# Load BAI index for fast random access
index = biometal.BaiIndex.from_path("alignments.bam.bai")

# Query specific genomic region (1.68× faster than full scan for small files)
# Speedup increases dramatically with file size (10-500× for 1-10 GB files)
for record in biometal.BamReader.query_region(
    "alignments.bam",
    index,
    "chr1",
    1000000,  # start position
    2000000   # end position
):
    # Only reads overlapping region are returned
    if record.is_mapped and record.mapq >= 30:
        print(f"{record.name}: {record.position}-{record.reference_end()}")

# Reuse index for multiple queries (index loading: <1ms overhead)
regions = [
    ("chr1", 1000000, 2000000),
    ("chr1", 5000000, 6000000),
    ("chr2", 100000, 200000),
]

for chrom, start, end in regions:
    count = sum(1 for _ in biometal.BamReader.query_region(
        "alignments.bam", index, chrom, start, end
    ))
    print(f"{chrom}:{start}-{end}: {count} reads")

# Full workflow: Coverage calculation for specific region
from collections import defaultdict

coverage = defaultdict(int)
for record in biometal.BamReader.query_region(
    "alignments.bam", index, "chr1", 1000, 2000
):
    if record.is_mapped and record.position is not None:
        # Calculate coverage from CIGAR
        pos = record.position
        for op in record.cigar:
            if op.consumes_reference():
                for i in range(op.length):
                    coverage[pos] += 1
                    pos += 1

print(f"Mean coverage: {sum(coverage.values())/len(coverage):.1f}×")
```

**Performance Characteristics:**
- Index loading: < 1ms (negligible overhead)
- Small region query (1 Kbp): ~11 ms vs 18 ms full scan (1.68× speedup)
- Speedup scales with file size:
  - 1 MB file: 1.7× speedup
  - 100 MB file: 10-20× speedup
  - 1 GB file: 50-100× speedup
  - 10 GB file: 200-500× speedup

### Format Library: BED/GFA/VCF/GFF3 (v1.8.0)

```python
import biometal

# BED: Parse genomic intervals (ChIP-seq peaks, gene annotations)
stream = biometal.Bed6Stream.from_path("peaks.bed.gz")
for record in stream:
    print(f"{record.chrom}:{record.start}-{record.end} score={record.score}")
    length = record.length()
    if length > 1000:
        print(f"  Long peak: {length}bp")

# GFA: Parse assembly graphs (genome assembly, pangenomes)
stream = biometal.GfaStream.from_path("assembly.gfa")
segments = []
for record in stream:
    if isinstance(record, biometal.GfaSegment):
        segments.append(record)
        print(f"Segment {record.name}: {len(record.sequence)}bp")

# VCF: Parse genetic variants (SNPs, indels)
stream = biometal.VcfStream.from_path("variants.vcf.gz")
header = stream.header()  # Note: header() not parse_header()
print(f"VCF version: {header.fileformat}, Samples: {len(header.samples)}")

for variant in stream:
    if variant.quality and variant.quality > 30:
        print(f"{variant.chrom}:{variant.pos} {variant.reference}→{variant.alternate[0]}")
        if variant.is_snp():
            print(f"  SNP with quality {variant.quality}")

# GFF3: Parse hierarchical gene annotations (genes, mRNAs, exons, CDS)
stream = biometal.Gff3Stream.from_path("annotations.gff3.gz")
for feature in stream:
    if feature.feature_type == "gene":
        gene_id = feature.get_id()
        length = feature.length()  # 1-based inclusive coordinates
        print(f"Gene {gene_id}: {length}bp on {feature.strand}")

    elif feature.feature_type == "exon":
        parent = feature.get_parent()
        # Note: interval() method not available in Python bindings
        # Use feature.start and feature.end directly (1-based inclusive)
        print(f"  Exon of {parent}: {feature.start}-{feature.end}")
```

**Format Library Features:**
- **Streaming architecture**: Constant ~5 MB memory for all formats
- **Production-ready**: Tested against real ENCODE, UCSC, Ensembl, 1000 Genomes data
- **Property-based testing**: 23 tests validating format invariants (round-trip parsing, coordinate systems, specification compliance)
- **Real-world validation**: 6 integration tests with production files (61,547 GFF3 features, 1,000 UCSC genes, 10 VCF variants)
- **Python bindings**: Full streaming API with Pythonic interfaces

---

## FAQ

**Q: Why `biometal-rs` on PyPI but `biometal` everywhere else?**
A: The `biometal` name was taken on PyPI, so we use `biometal-rs` for installation. You still import as `import biometal`.

**Q: What platforms are supported?**
A: Mac ARM (optimized), Linux ARM/x86_64 (portable). Pre-built wheels for common platforms. See [docs/CROSS_PLATFORM_TESTING.md](docs/CROSS_PLATFORM_TESTING.md).

**Q: Why ARM-native?**
A: To democratize bioinformatics by enabling world-class performance on consumer hardware ($1,400 MacBooks vs. $50,000 servers).

More questions? See [FAQ.md](FAQ.md)

---

## Contributing

We welcome contributions! See [CLAUDE.md](CLAUDE.md) for development guidelines.

biometal is built on evidence-based optimization - new features should:
1. Have clear use cases
2. Be validated experimentally (when adding optimizations)
3. Maintain platform portability
4. Follow [OPTIMIZATION_RULES.md]OPTIMIZATION_RULES.md

---

## License

Licensed under either of:

- Apache License, Version 2.0 ([LICENSE-APACHE]LICENSE-APACHE)
- MIT license ([LICENSE-MIT]LICENSE-MIT)

at your option.

---

## Citation

If you use biometal in your research:

```bibtex
@software{biometal2025,
  author = {Handley, Scott},
  title = {biometal: ARM-native bioinformatics with streaming architecture},
  year = {2025},
  url = {https://github.com/shandley/biometal}
}
```

For the experimental methodology:
```bibtex
@misc{asbb2025,
  author = {Handley, Scott},
  title = {Apple Silicon Bio Bench: Systematic Hardware Characterization},
  year = {2025},
  url = {https://github.com/shandley/apple-silicon-bio-bench}
}
```

---

<p align="center">
<strong>Status:</strong> v1.10.0 released 🚀<br>
<strong>Latest:</strong> GTF + PAF + narrowPeak parsers with optimized Python bindings (Nov 14, 2025)<br>
<strong>Tests:</strong> 551 library tests passing (including 65 new format tests) + 23 property-based<br>
<strong>Performance:</strong> 5.82M records/sec, 92.0 MiB/s throughput, 50-60% Python memory reduction<br>
<strong>Python Functions:</strong> 70+ (FASTQ/FASTA, BAM/BAI, BED/narrowPeak, GFA, VCF, GFF3, GTF, PAF)<br>
<strong>Evidence Base:</strong> 1,357 experiments, 40,710 measurements
</p>