bio_files 0.4.0

Save and load common biology file formats
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
# Bio Files: Read and write common biology file formats


[![Crate](https://img.shields.io/crates/v/bio_files.svg)](https://crates.io/crates/bio_files)
[![Docs](https://docs.rs/bio_files/badge.svg)](https://docs.rs/bio_files)
[![PyPI](https://img.shields.io/pypi/v/biology-files.svg)](https://pypi.org/project/biology-files)
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.17445294.svg)](https://doi.org/10.5281/zenodo.17445294)

[Home page](https://www.athanorlab.com/rust-tools)

This Rust and Python library contains functionality to load and save data in common biology file formats. It operates
on data structures that are specific to each file format; you will need to convert to and from the structures
used by your application. The API docs, and examples below are sufficient to get started.

Note: Install the pip version with `pip install biology-files` due to a name conflict.

### Supported formats:


- mmCIF (Protein atom, residue, chain, and related data like secondary structure)
- mmCIF (structure factors / 2fo-fc: Electron density data, raw)
- Mol2 (Small molecules, e.g. ligands)
- SDF (Small molecules, e.g. ligands)
- PDBQT (Small molecules, e.g. ligands. Includes docking-specific fields.)
- Map (Electron density, e.g. from crystallography, Cryo EM. Processed using Fourier transforms)
- MTZ: If [Gemmi]https://gemmi.readthedocs.io/en/latest/ is installed. (Electron density)
- AB1 (Sequence tracing)
- DAT (Amber force field data for small molecules)
- FRCMOD (Amber force field patch data for small molecules)
- Amber .lib files, e.g. with charge data for amino acids and proteins.
- GRO (Gromacs molecules)
- TOP (Gromacs topology) - WIP
- ORCA Input and output files (quantum chemistry; HF, DFT etc)
- XYZ (Minimal atom coordinate format)
- DCD (MD trajectories)
- XTC: If [MDTraj]https://www.mdtraj.org/1.9.8.dev0/index.html is installed. (MD trajectories)

### Planned:


- DNA (Exists in PlasCAD; needs to be decoupled)

## Generic data types


This library includes a number of relatively generic data types which are returned by various load functions,
and required to save data. These may be used in your application directly, or converted into a more specific
format. Examples:

- [AtomGeneric]https://docs.rs/bio_files/latest/bio_files/struct.AtomGeneric.html
- [BondGeneric]https://docs.rs/bio_files/latest/bio_files/struct.BondGeneric.html
- [ResidueGeneric]https://docs.rs/bio_files/latest/bio_files/struct.ResidueGeneric.html
- [BondType]https://docs.rs/bio_files/latest/bio_files/enum.BondType.html
- [LipidStandard]https://docs.rs/bio_files/latest/bio_files/enum.LipidStandard.html

For Genbank, we recommend [gb-io](https://docs.rs/gb-io/latest/gb_io/). We do not plan to support this format, due to
this high quality library.

Each module represents a file format, and most have dedicated structs dedicated to operating on that format.

It operates using structs with public fields, which you can explore
using the [API docs](https://docs.rs/bio_files), or your IDE. These structs generally include these three methods:
`new()`,
`save()` and `load()`. `new()` accepts `&str` for text files, and a `R: Read + Seek` for binary. `save()` and
`load()` accept `&Path`.
The Force Field formats use `load_dat`, `save_frcmod` instead, as they use the same structs for both formats.

## Serial numbers


Serial numbers for atoms, residues, secondary structure, and chains are generally pulled directly from atom data files
(mmCIF, Mol2 etc). These lists reference atoms, or residues, stored as `Vec<u32>`, with the `u32` being the serial
number.
In your application, you may wish to adapt these generic types to custom ones that use index lookups
instead of serial numbers. We use SNs here because they're more robust, and match the input files directly;
add optimizations downstream, like converting to indices, and/or applying back-references. (e.g. the index of the
residue
an atom's in, in your derived Atom struct).

## Orca interface


This library provides an interface to building Orca inputs, executing commands, and parsing
outputs. It uses Rust data structures to contrain input choices into valid ones when possible, and allows you to
integrate Orca into Rust programs and libraries. For example,
[ChemForma](https://github.com/david-oconnorChemForma) uses it to minimize energy on organic
molecules, and augment traditional MD technique with quantum mechanics.

ORCA support in this library is limited to Rust only. If you wish to use Orca with Python,
use [OPI, the official FACCTS library](https://github.com/faccts/opi).

Note: Orca support is currently limited to a subset of features. We plan to gradually expand this.
If you're looking for specific functionality, please open an Issue or PR on Github.

Can generate and run [ORCA](https://www.faccts.de/orca/) commands, and parse the result. Example:

## Loading building-block molecules from templates


We can load amino acids, nucleic acids, and lipids from Amber template files. These are standard
molecule segments used to build common biological molecules. Example usage:

```rust
use dynamics::{LIPID_21_LIB, AMINO_19, RNA_LIB, OL24_LIB};

// Returns io::Result<HashMap<String, TemplateData>>
let lipids = load_templates(LIPID_21_LIB).unwrap();
let dna = load_templates(OL24_LIB).unwrap();
let amino_acids = load_templates(AMINIO19_LIB).unwrap();
```

## Code examples


```rust
use std::path::PathBuf;
use bio_files::orca::{OrcaInput, Thermostat, Method, Task, BasisSet};

fn main() {
    let mut orca_inp = OrcaInput {
        task:
        method: Method::PBE0,
        basis_set: BasisSet::Def2Svp,
        atoms,
        ..Default::default()
    };

    orca_inp.keywords = vec![Keyword::D4Dispersion];

    println!("Orca input:\n{}\n", orca_inp.make_inp());
    // Save to disk if desired:
    orca_inp.save(Path::new("atoms.inp"))?;

    println!("Running Orca...");
    let orca_out = orca_inp.run().unwrap();

    println!("Orca OUT:\n{:?}\n", orca_out);

    // To run an ab-initio dynamics sim:
    let dyn = Dynamics {
        timestep: 0.5,
        init_vel: 310.,
        thermostat: Thermostat::Csvr,
        thermostat_temp: 310.,
        thermostat_timecon: 10.,
        traj_out_dir: PathBuf::from_str(
            "traj.xyz").unwrap(),
        steps: 200,
    };

    let orca_inp = OrcaInput {
        task: Task::Dynamics(dyn),
        method: Method::R2SCAN_c3,
        basis_set: BasisSet::Tzvp,
        atoms,
        ..Default::default()
    };

    orca_inp.run().unwrap();
}
```

## Example use


Small molecule save and load, Python.

```python
from biology_files import Sdf

sdf_data = Sdf.load("./molecules/DB03496.sdf")

sdf_data.atoms[0]
#AtomGeneric { serial_number: 1, posit: Vec3 { x: 2.3974, y: 1.1259, z: 2.5289 }, element: Chlorine,

type_in_res: None, force_field_type: None, occupancy: None, partial_charge: None, hetero: true }

sdf_data.atoms[0].posit
# [2.3974, 1.1259, 2.5289]


sdf_data.save("test.sdf")

mol2_data = sdf_data.to_mol2()
mol2_data.save("test.mol2")

# Load molecules from databases using identifiers:

mol = Sdf.load_drugbank("DB00198")
mol = Sdf.load_pubchem(12345)
mol = Sdf.load_pdbe("CPB")
mol = Mol2.load_amber_geostd("CPB")

peptide = MmCif.load_rcsb("8S6P")

# (See the Rust examples and API docs for more functionality; most

# is exposed in Python as well)

```

Small molecule save and load, Rust.

```rust
use bio_files::{Sdf, Mol2};

// ...
let sdf_data = Sdf::load(Path::new("./molecules/DB03496.sdf")) ?;

sdf_data.atoms[0]; // (as above)
sdf_data.atoms[0].posit;  // (as above, but lin_alg::Vec3))

sdf_data.save(Path::new("test.sdf")) ?;

let mol2_data: Mol2 = sdf_data.into();
mol2_data.save(Path::new("test.mol2")) ?;

let xyz_data = Xyz::load(Path::new("./atom_posits.xyz")) ?;


// Loading Force field parameters:
let p = Path::new("gaff2.dat")
let params = ForceFieldParams::load_dat(p) ?;


// Load electron density structure factors data, to be processed with a FFT:
let path = Path::new("8s6p_validation_2fo-fc_map_coef.cif");
let data = CifStructureFactors::new_from_path(path) ?;

// These functions aren't included; an example of turning loaded structure factor data
// into a density map.
let mut fft_planner = FftPlanner::new();
let dm = density_map_from_mmcif( & data, & mut fft_planner) ?;

// Or if you have a Map file:
let p = Path::new("8s6p.map");
let dm = DensityMap::load(path) ?;

// For MTZ files, or 2fo-fc:
let dm = DensityMap::from_sf_or_mtz(path, None) ?;

// Saving a density map:
dm.save(Path::new("8s6p.map")) ?;
// Uses the file extension `.mmcif` or `.mtz` to determine which format to save as.
dm.save_sf_or_mtz(Path::new("8s6p.mtz")) ?;

// Load molecules from databases using identifiers:
let mol = Sdf::load_drugbank("DB00198") ?;
let mol = Sdf::load_pubchem(12345) ?;
let mol = Sdf::load_pdbe("CPB") ?;
let mol = Mol2::load_amber_geostd("CPB") ?;

let peptide = MmCif::load_rcsb("8S6P") ?;
```

You can use similar syntax for mmCIF protein files.

## Amber force fields


Reference the [Amber 2025 Reference Manual, section 15](https://ambermd.org/doc12/Amber25.pdf)
for details on how we parse its files, and how to use the results. In some cases, we change the format from
the raw Amber data. For example, we store angles as radians (vice degrees), and σ vice R_min for Van der Waals
parameters. Structs and fields are documented with reference manual references.

The Amber forcefield parameter format has fields which each contain a `Vec` of a certain type of data. (Bond stretching
parameters,
angle between 3 atoms, torsion/dihedral angles etc.) You may wish to parse these into a format that has faster lookups
for your application.

Note that the above examples expect that your application has a struct representing the molecule that has
`From<Mol2>`, and `to_mol2(&self)` (etc) methods. The details of these depend on the application. For example:

```rust
impl From<Sdf> for Molecule {
    fn from(m: Sdf) -> Self {
        // We've implemented `From<AtomGeneric>` and `From<ResidueGeneric>` for our application's `Atom` and
        // `Residue`
        let atoms = m.atoms.iter().map(|a| a.into()).collect();
        let residues = m.residues.iter().map(|r| r.into()).collect();

        Self::new(m.ident, atoms, m.chains.clone(), residues, None, None);
    }
}
```

A practical example of parsing a molecule from a `mmCIF` as parsed from `bio_files` into an application-specific format:

```rust
fn load() {
    let cif_data = mmcif::load("./1htm.cif");
    let mol: Molecule = cif_data.try_into().unwrap();
}

impl TryFrom<MmCif> for Molecule {
    type Error = io::Error;

    fn try_from(m: MmCif) -> Result<Self, Self::Error> {
        let mut atoms: Vec<_> = m.atoms.iter().map(|a| a.into()).collect();

        let mut residues = Vec::with_capacity(m.residues.len());
        for res in &m.residues {
            residues.push(Residue::from_generic(res, &atoms)?);
        }

        let mut chains = Vec::with_capacity(m.chains.len());
        for c in &m.chains {
            chains.push(Chain::from_generic(c, &atoms, &residues)?);
        }

        // Now that chains and residues are loaded, update atoms with their back-ref index.
        for atom in &mut atoms {
            for (i, res) in residues.iter().enumerate() {
                if res.atom_sns.contains(&atom.serial_number) {
                    atom.residue = Some(i);
                    break;
                }
            }

            for (i, chain) in chains.iter().enumerate() {
                if chain.atom_sns.contains(&atom.serial_number) {
                    atom.chain = Some(i);
                    break;
                }
            }
        }

        let mut result = Self::new(m.ident.clone(), atoms, chains, residues, None, None);

        result.experimental_method = m.experimental_method.clone();
        result.secondary_structure = m.secondary_structure.clone();

        result.bonds_hydrogen = Vec::new();
        result.adjacency_list = result.build_adjacency_list();

        Ok(result)
    }
}
```

# A protein loading and prep example:


Python:

```python
use biology_files::{Mol2, MmCif, ForceFieldParams, FfParamSet, prepare_peptide, load_prmtop};

mol = Mol2.load("CPB.mol2")
protein = MmCif.load("1c8k.cif")

param_set = FfParamSet.new_amber()
lig_specific = ForceFieldParams.load_frcmod("CPB.frcmod")

# Or, instead of loading atoms and mol-specific params separately:

# mol, lig_specific = load_prmtop("my_mol.prmtop")


# Add Hydrogens, force field type, and partial charge to atoms in the protein; these usually aren't

# included from RSCB PDB. You can also call `populate_hydrogens_dihedrals()`, and

# `populate_peptide_ff_and_q() separately. Add bonds.
protein.atoms, protein.bonds = prepare_peptide(
    protein.atoms,
    protein.bonds,
    protein.residues,
    protein.chains,
    param_set.peptide_ff_q_map,
    7.0,
)
```

Rust:

```rust
use bio_files::{MmCif, Mol2, ForceFieldParams, FfParamSet, prepare_peptide, load_prmtop};
use std::path::Path;

fn load() {
    let param_set = FfParamSet::new_amber().unwrap();

    let mut protein = MmCif::load(Path::new("1c8k.cif")).unwrap();
    let mol = Mol2::load(Path::new("CPB.mol2")).unwrap();
    let mol_specific = ForceFieldParams::load_frcmod(Path::new("CPB.frcmod")).unwrap();

    // Or, instead of loading atoms and mol-specific params separately:
    // let (mol, lig_specific) = load_prmtop("my_mol.prmtop");

    // Or, if you have a small molecule available in Amber Geostd, load it remotely:
    // let data = bio_apis::amber_geostd::load_mol_files("CPB");
    // let mol = Mol2::new(&data.mol2);
    // let mol_specific = ForceFieldParams::from_frcmod(&data.frcmod);

    // Add Hydrogens, force field type, and partial charge to atoms in the protein; these usually aren't
    // included from RSCB PDB. You can also call `populate_hydrogens_dihedrals()`, and
    // `populate_peptide_ff_and_q() separately. Add bonds.
    prepare_peptide(
        &mut protein.atoms,
        &mut protein.bonds,
        &mut protein.residues,
        &mut protein.chains,
        &param_set.peptide_ff_q_map.as_ref().unwrap(),
        7.0,
    )
        .unwrap();
}
```

## MD trajectories example


```rust
use bio_files::dcd::DcdTrajectory;

fn load() {
    let traj = DcdTrajectory::load("traj.dcd").unwrap();

    // Or, if you have MDTraj installed, load DCD files:
    let traj = DcdTrajectory::load_xtc("traj.xtc").unwrap();

    println!("Unit cell: {:?}", traj.unit_cell);
    for frame in traj.frames {
        println!("Time: {}", frame.time);
        for posit in &frame.atom_posits {
            // ... 
        }
    }

    // To save:
    DcdTrajectory::save("traj.dcd").unwrap();
    DcdTrajectory::save_xtc("traj.xtc").unwrap();
}
```

Note: The Python version is currently missing support for some formats, and not all fields are exposed.

### References


- [Amber 2025 Reference Manual, section 15]https://ambermd.org/doc12/Amber25.pdf