1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
//! # Amino acid translation tables
//!
//! This module provides traits for implementing amino acid translation tables.
//!
//! Enable the translation feature in `Cargo.toml`:
//!
//! ```toml
//! [dependencies]
//! bio-seq = { version="0.13", features=["translation"] }
//! ```
//!
//! ## Examples
//!
//! The standard genetic code is provided as a `translation::STANDARD` constant:
//!
//! ```rust
//! use bio_seq::prelude::*;
//! use bio_seq::translation::STANDARD;
//! use bio_seq::translation::TranslationTable;
//!
//! let seq = dna!("AATTTGTGGGTTCGTCTGCGGCTCCGCCCTTAGTACTATGAGGACGATCAGCACCATAAGAACAAA");
//!
//! let aminos: Seq<Amino> = seq
//! .windows(3)
//! .map(|codon| STANDARD.to_amino(&codon))
//! .collect::<Seq<Amino>>();
//!
//! assert_eq!(
//! aminos,
//! Seq::<Amino>::try_from("NIFLCVWGGVFSRVSLCARGALSPRAPPLL*SVYTLYM*ERGDTRDISQSAHTPHI*KRENTQK").unwrap()
//! );
//!
//! ```
//!
//! Custom translation tables can be implemented from associative datastructures:
//!
//! ```
//! use bio_seq::prelude::*;
//! use bio_seq::translation::{TranslationTable, TranslationError};
//!
//! struct Mitochondria;
//! impl TranslationTable<Dna, Amino> for Mitochondria {
//! fn to_amino(&self, codon: &SeqSlice<Dna>) -> Amino {
//! if codon == dna!("AGA") {
//! Amino::X
//! } else if codon == dna!("AGG") {
//! Amino::X
//! } else if codon == dna!("ATA") {
//! Amino::M
//! } else if codon == dna!("TGA") {
//! Amino::W
//! } else {
//! Amino::unsafe_from_bits(Into::<u8>::into(codon))
//! }
//! }
//!
//! fn to_codon(&self, _amino: Amino) -> Result<Seq<Dna>, TranslationError> {
//! unimplemented!()
//! }
//! }
//!
//! let seq: Seq<Dna> =
//! dna!("AATTTGTGGGTTCGTCTGCGGCTCCGCCCTTAGTACTATGAGGACGATCAGCACCATAAGAACAAA").into();
//! let aminos: Seq<Amino> = seq
//! .windows(3)
//! .map(|codon| Mitochondria.to_amino(&codon))
//! .collect::<Seq<Amino>>();
//! assert_eq!(seq.len() - 2, aminos.len());
//!
//! for (x, y) in aminos.into_iter().zip(
//! Seq::<Amino>::try_from(
//! "NIFLCVWGGVFSRVSLCARGALSPRAPPLL*SVYTLYMWE*GDTRDISQSAHTPHM*K*ENTQK",
//! )
//! .unwrap()
//! .into_iter(),
//! ) {
//! assert_eq!(x, y)
//! }
//! ```
//!
//! ## Errors
//!
//! Translation tables may not be complete or they may be ambiguous
//!
use core::fmt;
use std::collections::HashMap;
use crate::codec::Codec;
use crate::prelude::{Amino, Dna, Seq, SeqSlice};
mod standard;
pub use crate::translation::standard::STANDARD;
/// Error conditions for codon/amino acid translation
#[derive(Debug, PartialEq, Eq, Clone)]
pub enum TranslationError<A: Codec = Dna, B: Codec + fmt::Display + fmt::Debug = Amino> {
/// Amino acid can be translation from multiple codons
AmbiguousCodon(B),
/// Codon sequence maps to multiple amino acids
AmbiguousTranslation(Seq<A>),
/// Codon sequence does not map to an amino acid
InvalidCodon(Seq<A>),
/// Amino acid symbol is not valid (i.e. `X`)
InvalidAmino(B),
}
impl<A: Codec, B: Codec + fmt::Display> fmt::Display for TranslationError<A, B> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
TranslationError::AmbiguousCodon(amino) => {
write!(f, "Multiple codon sequences: {amino}")
}
TranslationError::AmbiguousTranslation(codon) => {
write!(f, "Ambiguous translations for codon: {codon}")
}
TranslationError::InvalidCodon(codon) => write!(f, "Invalid codon sequence: {codon}"),
TranslationError::InvalidAmino(amino) => {
write!(f, "Invalid amino acid character: {amino:?}")
}
}
}
}
// #![feature(error_in_core)
impl<A: Codec, B: Codec + fmt::Display + fmt::Debug> std::error::Error for TranslationError<A, B> {}
/// A codon translation table where all codons map to amino acids
pub trait TranslationTable<A: Codec, B: Codec + fmt::Display> {
fn to_amino(&self, codon: &SeqSlice<A>) -> B;
/// # Errors
///
/// Will return `Err` when an amino acid has multiple codons (most cases)
fn to_codon(&self, amino: B) -> Result<Seq<A>, TranslationError<A, B>>;
}
/// A partial translation table where not all triples of characters map to amino acids
pub trait PartialTranslationTable<A: Codec, B: Codec + fmt::Display> {
/// # Errors
///
/// Will return an `Err` if a codon does not map to an amino acid. This would be
/// the case for a translation table from codons with ambiguous nucleotide codes such as `ANC`, `SWS`, `NNN`, etc.
fn try_to_amino(&self, codon: &SeqSlice<A>) -> Result<B, TranslationError<A, B>>;
/// # Errors
///
/// Will return an `Err` if the amino acid can be translated from different codons
fn try_to_codon(&self, amino: B) -> Result<Seq<A>, TranslationError<A, B>>;
}
/// A customisable translation table
pub struct CodonTable<A: Codec, B: Codec> {
// I'm open to using a better bidirectional mapping datastructure
table: HashMap<Seq<A>, B>,
inverse_table: HashMap<B, Option<Seq<A>>>,
}
impl<A: Codec, B: Codec + fmt::Display> CodonTable<A, B> {
pub fn from_map<T>(table: T) -> Self
where
T: Into<HashMap<Seq<A>, B>>,
{
let table: HashMap<Seq<A>, B> = table.into();
let mut inverse_table = HashMap::new();
for (codon, amino) in &table {
if inverse_table.contains_key(amino) {
inverse_table.insert(*amino, None);
} else {
inverse_table.insert(*amino, Some(codon.clone()));
}
}
CodonTable {
table,
inverse_table,
}
}
}
impl<A: Codec, B: Codec + fmt::Display> PartialTranslationTable<A, B> for CodonTable<A, B> {
fn try_to_amino(&self, codon: &SeqSlice<A>) -> Result<B, TranslationError<A, B>> {
match self.table.get(codon) {
Some(amino) => Ok(*amino),
None => Err(TranslationError::InvalidCodon(codon.into())),
}
}
fn try_to_codon(&self, amino: B) -> Result<Seq<A>, TranslationError<A, B>> {
if let Some(codon) = self.inverse_table.get(&amino) {
match codon {
Some(codon) => Ok(codon.clone()),
None => Err(TranslationError::AmbiguousCodon(amino)),
}
} else {
Err(TranslationError::InvalidAmino(amino))
}
}
}
#[cfg(test)]
mod tests {
use crate::prelude::*;
use crate::translation::{
CodonTable, PartialTranslationTable, TranslationError, TranslationTable,
};
#[test]
fn custom_codon_table() {
let mito: [(Seq<Dna>, Amino); 6] = [
(dna!("AAA").into(), Amino::A),
(dna!("ATG").into(), Amino::A),
(dna!("CCC").into(), Amino::C),
(dna!("GGG").into(), Amino::E),
(dna!("TTT").into(), Amino::D),
(dna!("TTA").into(), Amino::F),
];
let table = CodonTable::from_map(mito);
let seq: Seq<Dna> = dna!("AAACCCGGGTTTTTATTAATG").into();
let mut amino_seq: Seq<Amino> = Seq::new();
for codon in seq.chunks(3) {
amino_seq.push(table.try_to_amino(codon).unwrap());
}
assert_eq!(amino_seq, Seq::<Amino>::try_from("ACEDFFA").unwrap());
assert_ne!(table.try_to_codon(Amino::E), Ok(dna!("CCC").into()));
assert_eq!(table.try_to_codon(Amino::C), Ok(dna!("CCC").into()));
assert_eq!(
table.try_to_codon(Amino::A),
Err(TranslationError::AmbiguousCodon(Amino::A))
);
assert_eq!(
table.try_to_codon(Amino::X),
Err(TranslationError::InvalidAmino(Amino::X))
);
}
#[test]
fn mitochondrial_coding_table() {
struct Mitochondria;
impl TranslationTable<Dna, Amino> for Mitochondria {
fn to_amino(&self, codon: &SeqSlice<Dna>) -> Amino {
if codon == dna!("AGA") {
Amino::X
} else if codon == dna!("AGG") {
Amino::X
} else if codon == dna!("ATA") {
Amino::M
} else if codon == dna!("TGA") {
Amino::W
} else {
Amino::unsafe_from_bits(Into::<u8>::into(codon))
}
}
fn to_codon(&self, _amino: Amino) -> Result<Seq<Dna>, TranslationError> {
unimplemented!()
}
}
let seq: Seq<Dna> =
dna!("AATTTGTGGGTTCGTCTGCGGCTCCGCCCTTAGTACTATGAGGACGATCAGCACCATAAGAACAAA").into();
let aminos: Seq<Amino> = seq
.windows(3)
.map(|codon| Mitochondria.to_amino(&codon))
.collect::<Seq<Amino>>();
assert_eq!(seq.len() - 2, aminos.len());
for (x, y) in aminos.into_iter().zip(
Seq::<Amino>::try_from(
"NIFLCVWGGVFSRVSLCARGALSPRAPPLL*SVYTLYMWE*GDTRDISQSAHTPHM*K*ENTQK",
)
.unwrap()
.into_iter(),
) {
assert_eq!(x, y)
}
}
}