bincode_next/config.rs
1//! The config module is used to change the behavior of bincode's encoding and decoding logic.
2//!
3//! *Important* make sure you use the same config for encoding and decoding, or else bincode will not work properly.
4//!
5//! To use a config, first create a type of [Configuration]. This type will implement trait [Config] for use with bincode.
6//!
7//! ```
8//! let config = bincode_next::config::standard()
9//! // pick one of:
10//! .with_big_endian()
11//! .with_little_endian()
12//! // pick one of:
13//! .with_variable_int_encoding()
14//! .with_fixed_int_encoding();
15//! ```
16//!
17//! See [Configuration] for more information on the configuration options.
18
19pub(crate) use self::internal::*;
20use core::marker::PhantomData;
21
22/// The Configuration struct is used to build bincode configurations. The [Config] trait is implemented
23/// by this struct when a valid configuration has been constructed.
24///
25/// The following methods are mutually exclusive and will overwrite each other. The last call to one of these methods determines the behavior of the configuration:
26///
27/// - [`with_little_endian`\] and [`with_big_endian`\]
28/// - [`with_fixed_int_encoding`\] and [`with_variable_int_encoding`\]
29///
30///
31/// [with_little_endian]: #method.with_little_endian
32/// [with_big_endian]: #method.with_big_endian
33/// [with_fixed_int_encoding]: #method.with_fixed_int_encoding
34/// [with_variable_int_encoding]: #method.with_variable_int_encoding
35#[derive(Copy, Clone, Debug)]
36pub struct Configuration<E = LittleEndian, I = Varint, L = NoLimit> {
37 _e: PhantomData<E>,
38 _i: PhantomData<I>,
39 _l: PhantomData<L>,
40}
41
42// When adding more features to configuration, follow these steps:
43// - Create 2 or more structs that can be used as a type (e.g. Limit and NoLimit)
44// - Add an `Internal...Config` to the `internal` module
45// - Make sure `Config` and `impl<T> Config for T` extend from this new trait
46// - Add a generic to `Configuration`
47// - Add this generic to `impl<...> Default for Configuration<...>`
48// - Add this generic to `const fn generate<...>()`
49// - Add this generic to _every_ function in `Configuration`
50// - Add your new methods
51
52/// The default config for bincode 2.0. By default this will be:
53/// - Little endian
54/// - Variable int encoding
55#[must_use]
56pub const fn standard() -> Configuration {
57 generate()
58}
59
60/// Creates the "legacy" default config. This is the default config that was present in bincode 1.0
61/// - Little endian
62/// - Fixed int length encoding
63#[must_use]
64pub const fn legacy() -> Configuration<LittleEndian, Fixint, NoLimit> {
65 generate()
66}
67
68impl<E, I, L> Default for Configuration<E, I, L> {
69 fn default() -> Self {
70 generate()
71 }
72}
73
74const fn generate<E, I, L>() -> Configuration<E, I, L> {
75 Configuration {
76 _e: PhantomData,
77 _i: PhantomData,
78 _l: PhantomData,
79 }
80}
81
82impl<E, I, L> Configuration<E, I, L> {
83 /// Makes bincode encode all integer types in big endian.
84 #[must_use]
85 pub const fn with_big_endian(self) -> Configuration<BigEndian, I, L> {
86 generate()
87 }
88
89 /// Makes bincode encode all integer types in little endian.
90 #[must_use]
91 pub const fn with_little_endian(self) -> Configuration<LittleEndian, I, L> {
92 generate()
93 }
94
95 /// Makes bincode encode all integer types with a variable integer encoding.
96 ///
97 /// Encoding an unsigned integer `v` (of any type excepting `u8`) works as follows:
98 ///
99 /// 1. If `u < 251`, encode it as a single byte with that value.
100 /// 2. If `251 <= u < 2**16`, encode it as a literal byte `251`, followed by a `u16` with value `u`.
101 /// 3. If `2**16 <= u < 2**32`, encode it as a literal byte `252`, followed by a `u32` with value `u`.
102 /// 4. If `2**32 <= u < 2**64`, encode it as a literal byte `253`, followed by a `u64` with value `u`.
103 /// 5. If `2**64 <= u < 2**128`, encode it as a literal byte `254`, followed by a `u128` with value `u`.
104 ///
105 /// Then, for signed integers, we first convert to unsigned using the zigzag algorithm,
106 /// and then encode them as we do for unsigned integers generally. The reason we use this
107 /// algorithm is that it encodes those values which are close to zero in less bytes; the
108 /// obvious algorithm, where we encode the cast values, gives a very large encoding for all
109 /// negative values.
110 ///
111 /// The zigzag algorithm is defined as follows:
112 ///
113 /// ```rust
114 /// # type Signed = i32;
115 /// # type Unsigned = u32;
116 /// fn zigzag(v: Signed) -> Unsigned {
117 /// match v {
118 /// 0 => 0,
119 /// // To avoid the edge case of Signed::min_value()
120 /// // !n is equal to `-n - 1`, so this is:
121 /// // !n * 2 + 1 = 2(-n - 1) + 1 = -2n - 2 + 1 = -2n - 1
122 /// v if v < 0 => !(v as Unsigned) * 2 - 1,
123 /// v if v > 0 => (v as Unsigned) * 2,
124 /// # _ => unreachable!()
125 /// }
126 /// }
127 /// ```
128 ///
129 /// And works such that:
130 ///
131 /// ```rust
132 /// # let zigzag = |n: i64| -> u64 {
133 /// # match n {
134 /// # 0 => 0,
135 /// # v if v < 0 => !(v as u64) * 2 + 1,
136 /// # v if v > 0 => (v as u64) * 2,
137 /// # _ => unreachable!(),
138 /// # }
139 /// # };
140 /// assert_eq!(zigzag(0), 0);
141 /// assert_eq!(zigzag(-1), 1);
142 /// assert_eq!(zigzag(1), 2);
143 /// assert_eq!(zigzag(-2), 3);
144 /// assert_eq!(zigzag(2), 4);
145 /// // etc
146 /// assert_eq!(zigzag(i64::min_value()), u64::max_value());
147 /// ```
148 ///
149 /// Note that u256 and the like are unsupported by this format; if and when they are added to the
150 /// language, they may be supported via the extension point given by the 255 byte.
151 #[must_use]
152 pub const fn with_variable_int_encoding(self) -> Configuration<E, Varint, L> {
153 generate()
154 }
155
156 /// Fixed-size integer encoding.
157 ///
158 /// * Fixed size integers are encoded directly
159 /// * Enum discriminants are encoded as u32
160 /// * Lengths and usize are encoded as u64
161 #[must_use]
162 pub const fn with_fixed_int_encoding(self) -> Configuration<E, Fixint, L> {
163 generate()
164 }
165
166 /// Sets the byte limit to `limit`.
167 #[must_use]
168 pub const fn with_limit<const N: usize>(self) -> Configuration<E, I, Limit<N>> {
169 generate()
170 }
171
172 /// Clear the byte limit.
173 #[must_use]
174 pub const fn with_no_limit(self) -> Configuration<E, I, NoLimit> {
175 generate()
176 }
177}
178
179/// Indicates a type is valid for controlling the bincode configuration
180pub trait Config:
181 InternalEndianConfig + InternalIntEncodingConfig + InternalLimitConfig + Copy + Clone
182{
183 /// This configuration's Endianness
184 fn endianness(&self) -> Endianness;
185
186 /// This configuration's Integer Encoding
187 fn int_encoding(&self) -> IntEncoding;
188
189 /// This configuration's byte limit, or `None` if no limit is configured
190 fn limit(&self) -> Option<usize>;
191}
192
193impl<T> Config for T
194where
195 T: InternalEndianConfig + InternalIntEncodingConfig + InternalLimitConfig + Copy + Clone,
196{
197 fn endianness(&self) -> Endianness {
198 <T as InternalEndianConfig>::ENDIAN
199 }
200
201 fn int_encoding(&self) -> IntEncoding {
202 <T as InternalIntEncodingConfig>::INT_ENCODING
203 }
204
205 fn limit(&self) -> Option<usize> {
206 <T as InternalLimitConfig>::LIMIT
207 }
208}
209
210/// Encodes all integer types in big endian.
211#[derive(Copy, Clone, Debug)]
212pub struct BigEndian;
213
214impl InternalEndianConfig for BigEndian {
215 const ENDIAN: Endianness = Endianness::Big;
216}
217
218/// Encodes all integer types in little endian.
219#[derive(Copy, Clone, Debug)]
220pub struct LittleEndian;
221
222impl InternalEndianConfig for LittleEndian {
223 const ENDIAN: Endianness = Endianness::Little;
224}
225
226/// Use fixed-size integer encoding.
227#[derive(Copy, Clone, Debug)]
228pub struct Fixint;
229
230impl InternalIntEncodingConfig for Fixint {
231 const INT_ENCODING: IntEncoding = IntEncoding::Fixed;
232}
233
234/// Use variable integer encoding.
235#[derive(Copy, Clone, Debug)]
236pub struct Varint;
237
238impl InternalIntEncodingConfig for Varint {
239 const INT_ENCODING: IntEncoding = IntEncoding::Variable;
240}
241
242/// Sets an unlimited byte limit.
243#[derive(Copy, Clone, Debug)]
244pub struct NoLimit;
245impl InternalLimitConfig for NoLimit {
246 const LIMIT: Option<usize> = None;
247}
248
249/// Sets the byte limit to N.
250#[derive(Copy, Clone, Debug)]
251pub struct Limit<const N: usize>;
252impl<const N: usize> InternalLimitConfig for Limit<N> {
253 const LIMIT: Option<usize> = Some(N);
254}
255
256/// Endianness of a `Configuration`.
257#[derive(Copy, Clone, Debug, PartialEq, Eq)]
258#[non_exhaustive]
259pub enum Endianness {
260 /// Little Endian encoding, see `LittleEndian`.
261 Little,
262 /// Big Endian encoding, see `BigEndian`.
263 Big,
264}
265
266/// Integer Encoding of a `Configuration`.
267#[derive(Copy, Clone, Debug, PartialEq, Eq)]
268#[non_exhaustive]
269pub enum IntEncoding {
270 /// Fixed Integer Encoding, see `Fixint`.
271 Fixed,
272 /// Variable Integer Encoding, see `Varint`.
273 Variable,
274}
275
276mod internal {
277 use super::{Configuration, Endianness, IntEncoding};
278
279 pub trait InternalEndianConfig {
280 const ENDIAN: Endianness;
281 }
282
283 impl<E: InternalEndianConfig, I, L> InternalEndianConfig for Configuration<E, I, L> {
284 const ENDIAN: Endianness = E::ENDIAN;
285 }
286
287 pub trait InternalIntEncodingConfig {
288 const INT_ENCODING: IntEncoding;
289 }
290
291 impl<E, I: InternalIntEncodingConfig, L> InternalIntEncodingConfig for Configuration<E, I, L> {
292 const INT_ENCODING: IntEncoding = I::INT_ENCODING;
293 }
294
295 pub trait InternalLimitConfig {
296 const LIMIT: Option<usize>;
297 }
298
299 impl<E, I, L: InternalLimitConfig> InternalLimitConfig for Configuration<E, I, L> {
300 const LIMIT: Option<usize> = L::LIMIT;
301 }
302}