# Burn Image Models
[](https://crates.io/crates/bimm)
[](https://docs.rs/bimm/latest/)
This is a Rust crate for image models, inspired by the Python `timm` package.
Examples of loading pre-trained ResNet-18 model:
```rust,no_run
use bimm::cache::fetch_model_weights;
use bimm::models::resnet::{ResNet, ResNetAbstractConfig};
use burn::backend::Wgpu;
type B = Wgpu;
let device = Default::default();
let source =
"https://download.pytorch.org/models/resnet18-f37072fd.pth";
let source_classes = 1000;
let weights_path= fetch_model_weights(source).unwrap();
let my_classes = 10;
let model: ResNet<B> = ResNetAbstractConfig::resnet18(source_classes)
.to_structure()
.init(&device)
.load_pytorch_weights(weights_path)
.expect("Model should be loaded successfully")
.with_classes(my_classes)
// Enable (drop_block_prob) stochastic block drops for training:
.with_stochastic_drop_block(0.2)
// Enable (drop_path_prob) stochastic depth for training:
.with_stochastic_path_depth(0.1);
```
#### Recent Changes
* **0.3.3**
* Preview of ResNet-18 support.
* **0.3.2**
* Fixed visibility for `DropBlock3d` / `drop_block_3d` support.
* **0.3.1**
* added `DropBlock2d` / `drop_block_2d` support.
* **0.2.0**
* bumped `burn` dependency to `0.18.0`.