1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
//! `big_int` - Arbitrary precision, arbitrary base integer arithmetic library.
//!
//! ```
//! use big_int::prelude::*;
//!
//! let mut a: Loose<10> = "9000000000000000000000000000000000000000".parse().unwrap();
//! a /= 13.into();
//! assert_eq!(a, "692307692307692307692307692307692307692".parse().unwrap());
//!
//! let mut b: Loose<16> = a.convert();
//! assert_eq!(b, "208D59C8D8669EDC306F76344EC4EC4EC".parse().unwrap());
//! b >>= 16.into();
//!
//! let c: Loose<2> = b.convert();
//! assert_eq!(c, "100000100011010101100111001000110110000110011010011110110111000011".parse().unwrap());
//!
//! let mut d: Tight<256> = c.convert();
//! d += vec![15, 90, 0].into();
//! assert_eq!(d, vec![2, 8, 213, 156, 141, 134, 121, 71, 195].into());
//!
//! let e: Tight<10> = d.convert();
//! assert_eq!(format!("{e}"), "37530075201422313411".to_string());
//! ```
//!
//! This crate contains two primary big int implementations:
//! * `Loose<BASE>` - A collection of loosely packed ints representing each digit.
//!     Very memory inefficient, but with minimal performance overhead.
//! * `Tight<BASE>` - A collection of tightly packed bits representing each digit.
//!     Maximally memory efficient; however, the additional indirection adds some performance overhead.
//!
//! Ints support most basic arithmetic operations, including addition, subtraction, multiplication,
//! division, and left/right shifting. Notably, shifting acts on the `BASE` of the associated number, increasing
//! or decreasing the magnitude by powers of `BASE` as opposed to powers of 2.

extern crate self as big_int;

use std::{
    cmp::Ordering,
    fmt::Display,
    ops::{
        Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Shl, ShlAssign, Shr,
        ShrAssign, Sub, SubAssign,
    },
    str::FromStr,
};

use error::{BigIntError, ParseError};
use get_back::GetBack;

use self::Sign::*;

pub use big_int_proc::*;

pub mod prelude {
    //! Default exports: includes `Loose`, `Tight`, & `Sign`
    pub use crate::loose::*;
    pub use crate::tight::*;
    pub use crate::Sign::*;
    pub use crate::*;
}

pub(crate) mod test_utils;

pub mod get_back;
pub mod base64;
pub mod error;
pub mod loose;
pub mod tight;

/// Standard alphabet used when translating between text and big ints.
pub const STANDARD_ALPHABET: &str =
    "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";

/// Size of an individual big int digit.
pub type Digit = u64;
pub(crate) type DoubleDigit = u128;

/// Safely create a bitmask of `n` bits in size shifted
/// to the right side of the number without overflowing.
#[macro_export(local_inner_macros)]
macro_rules! mask {
    ($n:expr) => {
        (((1 << (($n) - 1)) - 1) << 1) + 1
    };
}

/// A big int.
/// 
/// Represents an arbitrary precision, arbitrary base natural number.
/// 
/// Supports basic arithmetic operations, as well as all utilities necessary for
/// coercing to and from various builtin types, such as primitive int types, `Vec`s, and `String`s.
///
/// ### For implementors: 
/// If implementing this trait for your own type, don't be alarmed by the massive list of `Self`
/// constraints. Use the included derive macro `big_int::BigIntTraits` to automatically derive
/// all traits using default `*_inner` implementations pre-provided by `BigInt`.
/// 
/// At least one of `normalize` or `normalized` must be defined to prevent recursion.\
/// At least one of `shl_inner` or `shl_assign_inner` must be defined to prevent recursion.\
/// At least one of `shr_inner` or `shr_assign_inner` must be defined to prevent recursion.\
/// 
/// ```
/// use big_int::prelude::*;
///
/// let mut a = TightBuilder::<10>::new();
/// a.push_back(1);
/// a.push_back(0);
/// a.push_back(4);
/// let a: Tight<10> = a.build();
/// assert_eq!(a, 104.into());
/// ```
pub trait BigInt<const BASE: usize>
where
    Self: GetBack<Item = Digit>
        + Clone
        + Default
        + std::fmt::Debug
        + Display
        + PartialEq
        + Eq
        + PartialOrd
        + Ord
        + Neg<Output = Self>
        + Add<Output = Self>
        + AddAssign
        + Sub<Output = Self>
        + SubAssign
        + Div<Output = Self>
        + DivAssign
        + Mul<Output = Self>
        + MulAssign
        + Shl<Output = Self>
        + ShlAssign
        + Shr<Output = Self>
        + ShrAssign
        + FromStr<Err = BigIntError>
        + FromIterator<Digit>
        + From<Vec<Digit>>
        + From<u8>
        + From<u16>
        + From<u32>
        + From<u64>
        + From<u128>
        + From<usize>
        + From<i8>
        + From<i16>
        + From<i32>
        + From<i64>
        + From<i128>
        + From<isize>
        + Into<u8>
        + Into<u16>
        + Into<u32>
        + Into<u64>
        + Into<u128>
        + Into<usize>
        + Into<i8>
        + Into<i16>
        + Into<i32>
        + Into<i64>
        + Into<i128>
        + Into<isize>
{
    type Builder: BigIntBuilder<{ BASE }> + Build<Self>;
    type DigitIterator<'a>: DoubleEndedIterator<Item = Digit>
    where
        Self: 'a;

    /// Default implementation of `big_int::GetBack`. 
    /// 
    /// Trait implementation may be provided automatically by `big_int_proc::BigIntTraits`.
    fn get_back_inner(&self, index: usize) -> Option<Digit> {
        self.len()
            .checked_sub(index)
            .and_then(|index| self.get_digit(index))
    }

    /// Default implementation of `Default`. 
    /// 
    /// Trait implementation may be provided automatically by `big_int_proc::BigIntTraits`.
    fn default_inner() -> Self {
        Self::zero()
    }

    /// Default implementation of `Display`. 
    /// 
    /// Trait implementation may be provided automatically by `big_int_proc::BigIntTraits`.
    fn fmt_inner(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(
            f,
            "{}",
            self.display(STANDARD_ALPHABET)
                .map_err(|_| std::fmt::Error)?
        )
    }

    /// Default implementation of `PartialOrd`. 
    /// 
    /// Trait implementation may be provided automatically by `big_int_proc::BigIntTraits`.
    fn partial_cmp_inner(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }

    /// Default implementation of `Ord`. 
    /// 
    /// Trait implementation may be provided automatically by `big_int_proc::BigIntTraits`.
    fn cmp_inner(&self, other: &Self) -> Ordering {
        match (self.sign(), other.sign()) {
            (Positive, Negative) => Ordering::Greater,
            (Negative, Positive) => Ordering::Less,
            (Positive, Positive) => self.cmp_magnitude(other),
            (Negative, Negative) => other.cmp_magnitude(self),
        }
    }

    /// Default implementation of `Neg`. 
    /// 
    /// Trait implementation may be provided automatically by `big_int_proc::BigIntTraits`.
    fn neg_inner(self) -> Self {
        let sign = self.sign();
        self.with_sign(-sign)
    }

    /// Default implementation of `Add`. 
    /// 
    /// Trait implementation may be provided automatically by `big_int_proc::BigIntTraits`.
    fn add_inner(self, rhs: Self) -> Self {
        if self.sign() != rhs.sign() {
            self - (-rhs)
        } else {
            let sign = self.sign();
            let mut carry = 0;
            let mut result = Self::Builder::new();
            for i in 1.. {
                match (self.get_back(i), rhs.get_back(i), carry) {
                    (None, None, 0) => break,
                    (left_digit, right_digit, carry_in) => {
                        let left_digit = left_digit.unwrap_or_default() as DoubleDigit;
                        let right_digit = right_digit.unwrap_or_default() as DoubleDigit;
                        let mut sum = left_digit + right_digit + carry_in;
                        if sum >= BASE as DoubleDigit {
                            sum -= BASE as DoubleDigit;
                            carry = 1;
                        } else {
                            carry = 0;
                        }
                        result.push_front(sum as Digit);
                    }
                }
            }
            result.with_sign(sign).build()
        }
    }

    /// Default implementation of `AddAssign`. 
    /// 
    /// Trait implementation may be provided automatically by `big_int_proc::BigIntTraits`.
    fn add_assign_inner(&mut self, rhs: Self) {
        if self.sign() != rhs.sign() {
            self.sub_assign_inner(rhs.neg_inner());
        } else {
            let self_len = self.len();
            let mut carry = 0;
            for i in 1.. {
                match (self.get_back(i), rhs.get_back(i), carry) {
                    (None, None, 0) => break,
                    (left_digit, right_digit, carry_in) => {
                        let left_digit = left_digit.unwrap_or_default() as DoubleDigit;
                        let right_digit = right_digit.unwrap_or_default() as DoubleDigit;
                        let mut sum = left_digit + right_digit + carry_in;
                        if sum >= BASE as DoubleDigit {
                            sum -= BASE as DoubleDigit;
                            carry = 1;
                        } else {
                            carry = 0;
                        }
                        if i <= self_len {
                            self.set_digit(self_len - i, sum as Digit);
                        } else {
                            self.push_front(sum as Digit);
                        }
                    }
                }
            }
            self.normalize();
        }
    }

    /// Default implementation of `Sub`. 
    /// 
    /// Trait implementation may be provided automatically by `big_int_proc::BigIntTraits`.
    fn sub_inner(mut self, rhs: Self) -> Self {
        if self.sign() != rhs.sign() {
            self.add_inner(rhs.neg_inner())
        } else if rhs.cmp_magnitude(&self).is_gt() {
            rhs.sub_inner(self).neg_inner()
        } else {
            let sign = self.sign();
            let mut result = Self::Builder::new();
            let self_len = self.len();
            for i in 1.. {
                match (self.get_back(i), rhs.get_back(i)) {
                    (None, None) => break,
                    (left_digit, right_digit) => {
                        let mut left_digit = left_digit.unwrap_or_default() as DoubleDigit;
                        let right_digit = right_digit.unwrap_or_default() as DoubleDigit;
                        if left_digit < right_digit {
                            for j in i + 1.. {
                                match self.get_back(j) {
                                    None => unreachable!("big int subtraction with overflow"),
                                    Some(0) => {
                                        self.set_digit(self_len - j, (BASE - 1) as Digit);
                                    }
                                    Some(digit) => {
                                        self.set_digit(self_len - j, digit - 1);
                                        break;
                                    }
                                }
                            }
                            left_digit += BASE as DoubleDigit;
                        }
                        result.push_front((left_digit - right_digit) as Digit);
                    }
                }
            }
            result.with_sign(sign).build()
        }
    }    
    
    /// Default implementation of `SubAssign`. 
    /// 
    /// Trait implementation may be provided automatically by `big_int_proc::BigIntTraits`.
    fn sub_assign_inner(&mut self, mut rhs: Self) {
        if self.sign() != rhs.sign() {
            self.add_assign_inner(rhs.neg_inner());
        } else if rhs.cmp_magnitude(self).is_gt() {
            rhs.sub_assign_inner(self.clone());
            *self = rhs.neg_inner();
        } else {
            let self_len = self.len();
            for i in 1.. {
                match (self.get_back(i), rhs.get_back(i)) {
                    (None, None) => break,
                    (left_digit, right_digit) => {
                        let mut left_digit = left_digit.unwrap_or_default() as DoubleDigit;
                        let right_digit = right_digit.unwrap_or_default() as DoubleDigit;
                        if left_digit < right_digit {
                            for j in i + 1.. {
                                match self.get_back(j) {
                                    None => unreachable!("big int subtraction with overflow"),
                                    Some(0) => {
                                        self.set_digit(self_len - j, (BASE - 1) as Digit);
                                    }
                                    Some(digit) => {
                                        self.set_digit(self_len - j, digit - 1);
                                        break;
                                    }
                                }
                            }
                            left_digit += BASE as DoubleDigit;
                        }
                        let difference = (left_digit - right_digit) as Digit;
                        if i <= self_len {
                            self.set_digit(self_len - i, difference);
                        } else {
                            self.push_front(difference);
                        }
                    }
                }
            }
            self.normalize();
        }
        self.normalize();
    }

    /// Default implementation of `Mul`. 
    /// 
    /// Trait implementation may be provided automatically by `big_int_proc::BigIntTraits`.
    fn mul_inner(mut self, mut rhs: Self) -> Self {
        let sign = self.sign() * rhs.sign();
        self.set_sign(Positive);
        rhs.set_sign(Positive);
        let mut result = Self::zero();
        for i in 1.. {
            if let Some(digit) = self.get_back(i) {
                for _ in 0..digit {
                    result += rhs.clone();
                }
                rhs.shl_assign_inner(1);
            } else {
                break;
            }
        }
        result.with_sign(sign).normalized()
    }

    /// Default implementation of `MulAssign`. 
    /// 
    /// Trait implementation may be provided automatically by `big_int_proc::BigIntTraits`.
    fn mul_assign_inner(&mut self, rhs: Self) {
        *self = self.clone() * rhs;
    }

    /// Default implementation of `Div`. 
    /// 
    /// Trait implementation may be provided automatically by `big_int_proc::BigIntTraits`.
    fn div_inner(self, rhs: Self) -> Self {
        self.div_rem(rhs).unwrap().0
    }

    /// Default implementation of `DivAssign`. 
    /// 
    /// Trait implementation may be provided automatically by `big_int_proc::BigIntTraits`.
    fn div_assign_inner(&mut self, rhs: Self) {
        *self = self.clone() / rhs;
    }

    /// Default implementation of `FromStr`. 
    /// 
    /// Trait implementation may be provided automatically by `big_int_proc::BigIntTraits`.
    fn from_str_inner(s: &str) -> Result<Self, BigIntError> {
        Self::parse(s, STANDARD_ALPHABET)
            .map_err(BigIntError::ParseFailed)
    }

    /// Default implementation of `FromIterator`. 
    /// 
    /// Trait implementation may be provided automatically by `big_int_proc::BigIntTraits`.
    fn from_iter_inner<T: IntoIterator<Item = Digit>>(iter: T) -> Self {
        let mut builder = Self::Builder::new();
        for digit in iter {
            builder.push_back(digit);
        }
        builder.build()
    }

    /// Default implementation of `From<_>` for all unsigned primitive int types. 
    /// 
    /// Trait implementation may be provided automatically by `big_int_proc::BigIntTraits`.
    fn from_u128_inner(mut value: u128) -> Self {
        let base = BASE as u128;
        let mut result = Self::Builder::new();
        while value >= base {
            let (new_value, rem) = (value / base, value % base);
            value = new_value;
            result.push_front(rem as Digit);
        }
        result.push_front(value as Digit);
        result.build()
    }

    /// Default implementation of `From<_>` for all signed primitive int types. 
    /// 
    /// Trait implementation may be provided automatically by `big_int_proc::BigIntTraits`.
    fn from_i128_inner(value: i128) -> Self {
        if value < 0 {
            Self::from_u128_inner((-value) as u128).with_sign(Negative)
        } else {
            Self::from_u128_inner(value as u128)
        }
    }

    /// Default implementation of `Into<_>` for all unsigned primitive int types. 
    /// 
    /// Trait implementation may be provided automatically by `big_int_proc::BigIntTraits`.
    fn into_u128_inner(self) -> u128 {
        if self.sign() == Negative {
            panic!("uint conversion with underflow");
        }
        let mut total: u128 = 0;
        let mut place: u128 = 0;
        for digit in self.iter().rev() {
            place = if place == 0 { 1 } else { place * BASE as u128 };
            total += (digit as u128) * place;
        }
        total
    }

    /// Default implementation of `Into<_>` for all signed primitive int types. 
    /// 
    /// Trait implementation may be provided automatically by `big_int_proc::BigIntTraits`.
    fn into_i128_inner(self) -> i128 {
        let mut total: i128 = 0;
        let mut place: i128 = 0;
        for digit in self.iter().rev() {
            place = if place == 0 { 1 } else { place * BASE as i128 };
            total += (digit as i128) * place;
        }
        if self.sign() == Negative {
            total = -total;
        }
        total
    }

    /// The length of the big int in digits.
    ///
    /// ```
    /// use big_int::prelude::*;
    ///
    /// let a: Tight<10> = 211864.into();
    /// assert_eq!(a.len(), 6);
    /// ```
    fn len(&self) -> usize;

    /// Get the digit of the big int at position `digit`,
    /// or None if the number does not have that many digits.
    ///
    ///
    /// ```
    /// use big_int::prelude::*;
    ///
    /// let a: Tight<10> = 12345.into();
    /// assert_eq!(a.get_digit(2), Some(3));
    /// assert_eq!(a.get_digit(6), None);
    /// ```
    fn get_digit(&self, digit: usize) -> Option<Digit>;

    /// Set the digit of the big int to `value` at position `digit`.
    ///
    /// If the set digit causes the leftmost digit of the number to be zero,
    /// the number will become denormal, and should be normalized before being used.
    ///
    /// ```
    /// use big_int::prelude::*;
    ///
    /// let mut a: Tight<10> = 10000.into();
    /// a.set_digit(1, 7);
    /// a.set_digit(4, 9);
    /// assert_eq!(a, 17009.into());
    /// ```
    fn set_digit(&mut self, digit: usize, value: Digit);

    /// The value zero represented as a big int.
    ///
    /// ```
    /// use big_int::prelude::*;
    ///
    /// let a: Tight<10> = 13.into();
    /// let b = 13.into();
    /// assert_eq!(a - b, BigInt::zero());
    /// ```
    fn zero() -> Self;

    /// The sign of the big int.
    ///
    /// The value zero represented as a big int.
    ///
    /// ```
    /// use big_int::prelude::*;
    ///
    /// let mut a: Tight<10> = 5.into();
    /// assert_eq!(a.sign(), Positive);
    /// a -= 14.into();
    /// assert_eq!(a.sign(), Negative);
    /// ```
    fn sign(&self) -> Sign;

    /// The big in with the given sign.
    ///
    /// ```
    /// use big_int::prelude::*;
    ///
    /// let a: Tight<10> = 95.into();
    /// assert_eq!(a.with_sign(Negative), (-95).into());
    /// ```
    fn with_sign(self, sign: Sign) -> Self;

    /// Set the sign of the big int to `sign`.
    ///
    /// ```
    /// use big_int::prelude::*;
    ///
    /// let mut a: Tight<10> = (-109).into();
    /// a.set_sign(Positive);
    /// assert_eq!(a, 109.into());
    /// ```
    fn set_sign(&mut self, sign: Sign);

    /// Append a digit to the right side of the int. Equivalent to `(int << 1) + digit`
    ///
    /// ```
    /// use big_int::prelude::*;
    ///
    /// let mut a: Tight<10> = 6.into();
    /// a.push_back(1);
    /// assert_eq!(a, 61.into());
    /// ```
    fn push_back(&mut self, digit: Digit);

    /// Append a digit to the left side of the int. May cause the resulting
    /// int to be denormalized; make sure to call .normalize() afterwards
    /// to prevent undefined functionality.
    ///
    /// ```
    /// use big_int::prelude::*;
    ///
    /// let mut a: Tight<10> = 6.into();
    /// a.push_front(1);
    /// assert_eq!(a.normalized(), 16.into());
    /// ```
    fn push_front(&mut self, digit: Digit);

    /// Divide the int by BASE^amount.
    ///
    /// Note: works in powers of BASE, not in powers of 2.
    ///
    /// Defined in terms of `shr_assign`; at least one of `shr` 
    /// or `shr_assign` must be defined by implementers.
    /// 
    /// Also acts as the default implementation of the `Shr` trait, 
    /// as provided automatically by `big_int_proc::BigIntTraits`.
    ///
    /// ```
    /// use big_int::prelude::*;
    ///
    /// let a: Tight<10> = 600.into();
    /// assert_eq!(a.shr_inner(2), 6.into());
    /// ```
    fn shr_inner(mut self, amount: usize) -> Self {
        self.shr_assign_inner(amount);
        self
    }

    /// Divide the int by BASE^amount in place.
    ///
    /// Note: works in powers of BASE, not in powers of 2.
    ///
    /// Defined in terms of `shr`; at least one of `shr` 
    /// or `shr_assign` must be defined by implementers.
    /// 
    /// Also acts as the default implementation of the `ShrAssign` trait, 
    /// as provided automatically by `big_int_proc::BigIntTraits`.
    ///
    /// ```
    /// use big_int::prelude::*;
    ///
    /// let mut a: Tight<10> = 600.into();
    /// a.shr_assign_inner(2);
    /// assert_eq!(a, 6.into());
    /// ```
    fn shr_assign_inner(&mut self, amount: usize) {
        *self = self.clone().shr_inner(amount);
    }

    /// Multiply the int by BASE^amount.
    ///
    /// Note: works in powers of BASE, not in powers of 2.
    ///
    /// Defined in terms of `shl_assign`; at least one of `shl`
    ///  or `shl_assign` must be defined by implementers.
    /// 
    /// Also acts as the default implementation of the `Shl` trait, 
    /// as provided automatically by `big_int_proc::BigIntTraits`.
    ///
    /// ```
    /// use big_int::prelude::*;
    ///
    /// let a: Tight<10> = 3.into();
    /// assert_eq!(a.shl_inner(2), 300.into());
    /// ```
    fn shl_inner(mut self, amount: usize) -> Self {
        self.shl_assign_inner(amount);
        self
    }

    /// Multiply the int by BASE^amount in place.
    ///
    /// Note: works in powers of BASE, not in powers of 2.
    ///
    /// Defined in terms of `shl`; at least one of `shl`
    ///  or `shl_assign` must be defined by implementers.
    /// 
    /// Also acts as the default implementation of the `ShlAssign` trait, 
    /// as provided automatically by `big_int_proc::BigIntTraits`.
    ///
    /// ```
    /// use big_int::prelude::*;
    ///
    /// let mut a: Tight<10> = 3.into();
    /// a.shl_assign_inner(2);
    /// assert_eq!(a, 300.into());
    /// ```
    fn shl_assign_inner(&mut self, amount: usize) {
        *self = self.clone().shl_inner(amount);
    }

    /// Iterate over the digits of the int.
    ///
    /// implements `DoubleEndedIterator`, so digits can be iterated over forward or in reverse.
    ///
    /// ```
    /// use big_int::prelude::*;
    ///
    /// let a: Tight<10> = 12345.into();
    /// assert_eq!(a.iter().collect::<Vec<_>>(), vec![1, 2, 3, 4, 5]);
    /// assert_eq!(a.iter().rev().collect::<Vec<_>>(), vec![5, 4, 3, 2, 1]);
    /// ```
    fn iter<'a>(&'a self) -> Self::DigitIterator<'a>;

    /// Return a normalized version of the int. A normalized int:
    /// * has no trailing zeros
    /// * has at least one digit
    /// * is not negative zero
    /// Additionally, `Tight`s will be aligned to the beginning of their data segment
    /// when normalized.
    ///
    /// Defined in terms of `normalize`; at least one of `normalize` or `normalized`
    /// must be defined by the implementer.
    ///
    /// ```
    /// use big_int::prelude::*;
    ///
    /// let n = unsafe { Loose::<10>::from_raw_parts(vec![0, 0, 8, 3]) };
    /// assert_eq!(n.normalized(), 83.into());
    /// ```
    fn normalized(mut self) -> Self {
        self.normalize();
        self
    }

    /// Normalize a big int in place.
    /// * has no trailing zeros
    /// * has at least one digit
    /// * is not negative zero
    /// Additionally, `Tight`s will be aligned to the beginning of their data segment
    /// when normalized.
    ///
    /// Defined in terms of `normalized`; at least one of `normalize` or `normalized`
    /// must be defined by the implementer.
    ///
    /// ```
    /// use big_int::prelude::*;
    ///
    /// let mut n = unsafe { Loose::<10>::from_raw_parts(vec![0, 0, 8, 3]) };
    /// n.normalize();
    /// assert_eq!(n, 83.into());
    /// ```
    fn normalize(&mut self) {
        *self = self.clone().normalized();
    }

    /// Convert a big int to a printable string using the provided alphabet `alphabet`.
    /// `Display` uses this method with the default alphabet `STANDARD_ALPHABET`.
    ///
    /// ```
    /// use big_int::prelude::*;
    ///
    /// assert_eq!(
    ///     Loose::<10>::from(6012).display(STANDARD_ALPHABET).unwrap(),
    ///     "6012".to_string()
    /// );
    /// ```
    fn display(&self, alphabet: &str) -> Result<String, BigIntError> {
        let digits = self
            .iter()
            .map(|digit| {
                alphabet
                    .chars()
                    .nth(digit as usize)
                    .ok_or(BigIntError::BaseTooHigh(BASE, alphabet.len()))
            })
            .collect::<Result<String, _>>()?;
        if self.sign() == Negative {
            Ok(format!("-{digits}"))
        } else {
            Ok(digits)
        }
    }

    /// Parse a big int from a `value: &str`, referencing the provided `alphabet`
    /// to determine what characters represent which digits. `FromStr` uses this method
    /// with the default alphabet `STANDARD_ALPHABET`.
    ///
    /// ```
    /// use big_int::prelude::*;
    ///
    /// assert_eq!(Loose::parse("125", STANDARD_ALPHABET), Ok(Loose::<10>::from(125)));
    /// ```
    fn parse(value: &str, alphabet: &str) -> Result<Self, ParseError> {
        let mut builder = Self::Builder::new();
        let (sign, chars) = match value.chars().next() {
            Some('-') => (Negative, value.chars().skip(1)),
            Some(_) => (Positive, value.chars().skip(0)),
            None => return Err(ParseError::NotEnoughCharacters),
        };
        for char in chars {
            match alphabet.chars().position(|c| c == char) {
                Some(pos) => {
                    if pos >= BASE {
                        return Err(ParseError::DigitTooLarge(char, pos, BASE));
                    } else {
                        builder.push_back(pos as Digit);
                    }
                }
                None => return Err(ParseError::UnrecognizedCharacter(char)),
            }
        }
        if builder.is_empty() {
            Err(ParseError::NotEnoughCharacters)
        } else {
            Ok(builder.with_sign(sign).build())
        }
    }

    /// Divide one int by another, returning the quotient & remainder as a pair,
    /// or an error if dividing by zero. This algorithm has a different time complexity
    /// than `BigInt::div_rem_lowmem` which makes it faster for most use cases, but also uses more memory.
    ///
    /// `b` - base\
    /// `d` - number of digits in quotient\
    /// Time complexity: `O(d * log(b))`\
    /// Memory complexity: `O(d * log(b))`\
    ///
    /// ```
    /// use big_int::prelude::*;
    ///
    /// let a: Loose<10> = 999_999_999.into();
    /// let b = 56_789.into();
    /// assert_eq!(a.div_rem(b), Ok((17_609.into(), 2_498.into())));
    /// ```
    fn div_rem(mut self, mut other: Self) -> Result<(Self, Self), BigIntError> {
        if other.clone().normalized() == Self::zero() {
            return Err(BigIntError::DivisionByZero);
        }
        if other.len() > self.len() {
            return Ok((Self::zero(), self));
        }
        let sign = self.sign() * other.sign();
        self.set_sign(Positive);
        other.set_sign(Positive);
        let quot_digits = self.len() - other.len() + 1;
        let mut quot = Self::Builder::new();
        let mut prod = Self::zero();
        let mut addend = other.clone().shl_inner(quot_digits - 1);
        let mut addends = Vec::new();
        let mut power = 1;
        while power < BASE {
            addends.push(addend.clone());
            addend += addend.clone();
            power <<= 1;
        }

        for _ in 0..quot_digits {
            let mut digit_value = 0;
            for power in (0..addends.len()).rev() {
                let new_prod = prod.clone() + addends[power].clone();
                if new_prod <= self {
                    digit_value += 1 << power;
                    prod = new_prod;
                }
                addends[power].shr_assign_inner(1);
            }
            quot.push_back(digit_value);
        }

        let mut rem = self - prod;
        if rem != Self::zero() {
            rem.set_sign(sign);
        }

        Ok((quot.with_sign(sign).build(), rem))
    }

    /// Convert an int from its own base to another target base.
    ///
    /// ```
    /// use big_int::prelude::*;
    ///
    /// let a: Loose<16> = Loose::<10>::from(99825).convert();
    /// assert_eq!(a, Loose::<16>::from(99825));
    /// ```
    fn convert<const TO: usize, T: BigInt<{ TO }>>(mut self) -> T {
        let sign = self.sign();
        let mut result = T::Builder::new();
        if BASE == TO {
            for digit in self.iter() {
                result.push_back(digit);
            }
        } else {
            self.set_sign(Positive);
            let to_base = Self::from(TO as Digit);
            while self >= to_base {
                let (quot, rem) = self.div_rem(to_base.clone()).unwrap();
                self = quot;
                result.push_front(Into::<Digit>::into(rem));
            }
            result.push_front(Into::<Digit>::into(self));
        }
        result.with_sign(sign).build()
    }

    /// Compare the absolute magnitude of two big ints, ignoring their sign.
    ///
    /// ```
    /// use big_int::prelude::*;
    ///
    /// let a: Tight<10> = (-105).into();
    /// let b = 15.into();
    /// assert!(a.cmp_magnitude(&b).is_gt());
    /// ```
    fn cmp_magnitude(&self, rhs: &Self) -> Ordering {
        match self.len().cmp(&rhs.len()) {
            Ordering::Equal => {
                for (self_digit, rhs_digit) in self.iter().zip(rhs.iter()) {
                    match self_digit.cmp(&rhs_digit) {
                        Ordering::Equal => {}
                        ordering => return ordering,
                    }
                }
                Ordering::Equal
            }
            order => order,
        }
    }
}

/// A builder for a big int. Use this to construct a big int one digit at a time,
/// then call .build() to finalize the builder.
///
/// You're most likely better off using one of the `From` implementations
/// as opposed to directly building your int via a builder.
///
/// ```
/// use big_int::prelude::*;
///
/// let mut a = TightBuilder::<10>::new();
/// a.push_back(5);
/// a.push_back(3);
/// a.push_back(0);
/// a.push_back(4);
/// let a: Tight<10> = a.build();
/// assert_eq!(a, 5304.into());
/// ```
pub trait BigIntBuilder<const BASE: usize>
where
    Self: std::fmt::Debug,
{
    /// Create a new builder.
    ///
    /// ```
    /// use big_int::prelude::*;
    ///
    /// let mut a = TightBuilder::<10>::new();
    /// a.push_back(5);
    /// assert_eq!(a.build(), 5.into());
    /// ```
    fn new() -> Self;

    /// Push a new digit to the end of the int.
    ///
    /// ```
    /// use big_int::prelude::*;
    ///
    /// let mut a = TightBuilder::<10>::new();
    /// a.push_back(5);
    /// a.push_back(6);
    /// assert_eq!(a.build(), 56.into());
    /// ```
    fn push_front(&mut self, digit: Digit);

    /// Push a new digit to the beginning of the int.
    ///
    /// ```
    /// use big_int::prelude::*;
    ///
    /// let mut a = TightBuilder::<10>::new();
    /// a.push_front(5);
    /// a.push_front(6);
    /// assert_eq!(a.build(), 65.into());
    /// ```
    fn push_back(&mut self, digit: Digit);

    /// Check if the builder is empty.
    ///
    /// ```
    /// use big_int::prelude::*;
    ///
    /// let mut a = TightBuilder::<10>::new();
    /// assert!(a.is_empty());
    /// a.push_front(5);
    /// assert!(!a.is_empty());
    /// ```
    fn is_empty(&self) -> bool;

    /// The builder with the given sign.
    ///
    /// ```
    /// use big_int::prelude::*;
    ///
    /// let mut a = TightBuilder::<10>::new();
    /// a.push_back(9);
    /// assert_eq!(a.with_sign(Negative).build(), (-9).into());
    /// ```
    fn with_sign(self, sign: Sign) -> Self;
}

/// Trait that represents the final build step of a BigIntBuilder.
///
/// ```
/// use big_int::prelude::*;
///
/// let mut a = TightBuilder::<10>::new();
/// a.push_back(5);
/// a.push_back(3);
/// a.push_back(0);
/// a.push_back(4);
/// let a: Tight<10> = a.build();
/// assert_eq!(a, 5304.into());
/// ```
pub trait Build<B> {
    /// Build the value and return the finalized result.
    ///
    /// ```
    /// use big_int::prelude::*;
    ///
    /// let mut a = TightBuilder::<10>::new();
    /// a.push_back(5);
    /// a.push_back(3);
    /// a.push_back(0);
    /// a.push_back(4);
    /// let a: Tight<10> = a.build();
    /// assert_eq!(a, 5304.into());
    /// ```
    fn build(self) -> B;
}

/// Represents the sign of a big int; either Positive or Negative.
///
/// ```
/// use big_int::prelude::*;
///
/// let mut a: Tight<10> = 18.into();
/// let s = a.sign();
/// assert_eq!(s, Positive);
/// a *= (-1).into();
/// let s = a.sign();
/// assert_eq!(s, Negative);
/// ```
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
pub enum Sign {
    Positive,
    Negative,
}

impl Neg for Sign {
    type Output = Sign;

    fn neg(self) -> Self::Output {
        match self {
            Positive => Negative,
            Negative => Positive,
        }
    }
}

impl Mul for Sign {
    type Output = Sign;

    fn mul(self, rhs: Self) -> Self::Output {
        if self == rhs {
            Positive
        } else {
            Negative
        }
    }
}