1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
//! [](https://crates.io/crates/big-brain)
//! [](https://docs.rs/big-brain)
//! [](./LICENSE.md)
//!
//! `big-brain` is a [Utility
//! AI](https://en.wikipedia.org/wiki/Utility_system) library for games, built
//! for the [Bevy Game Engine](https://bevyengine.org/)
//!
//! It lets you define complex, intricate AI behaviors for your entities based
//! on their perception of the world. Definitions are heavily data-driven,
//! using plain Rust, and you only need to program Scorers (entities that look
//! at your game world and come up with a Score), and Actions (entities that
//! perform actual behaviors upon the world). No other code is needed for
//! actual AI behavior.
//!
//! See [the documentation](https://docs.rs/big-brain) for more details.
//!
//! ### Features
//!
//! * Highly concurrent/parallelizable evaluation.
//! * Integrates smoothly with Bevy.
//! * Proven game AI model.
//! * Highly composable and reusable.
//! * State machine-style continuous actions/behaviors.
//! * Action cancellation.
//!
//! ### Example
//!
//! As a developer, you write application-dependent code to define
//! [`Scorers`](#scorers) and [`Actions`](#actions), and then put it all
//! together like building blocks, using [`Thinkers`](#thinkers) that will
//! define the actual behavior.
//!
//! #### Scorers
//!
//! `Scorer`s are entities that look at the world and evaluate into `Score`
//! values. You can think of them as the "eyes" of the AI system. They're a
//! highly-parallel way of being able to look at the `World` and use it to
//! make some decisions later.
//!
//! ```rust
//! use bevy::prelude::*;
//! use big_brain::prelude::*;
//! # #[derive(Component, Debug)]
//! # struct Thirst { thirst: f32 }
//!
//! #[derive(Debug, Clone, Component, ScorerBuilder)]
//! pub struct Thirsty;
//!
//! pub fn thirsty_scorer_system(
//! thirsts: Query<&Thirst>,
//! mut query: Query<(&Actor, &mut Score), With<Thirsty>>,
//! ) {
//! for (Actor(actor), mut score) in query.iter_mut() {
//! if let Ok(thirst) = thirsts.get(*actor) {
//! score.set(thirst.thirst);
//! }
//! }
//! }
//! ```
//!
//! #### Actions
//!
//! `Action`s are the actual things your entities will _do_. They are
//! connected to `ActionState`s that represent the current execution state of
//! the state machine.
//!
//! ```rust
//! use bevy::prelude::*;
//! use big_brain::prelude::*;
//! # #[derive(Component, Debug)]
//! # struct Thirst { thirst: f32 }
//!
//! #[derive(Debug, Clone, Component, ActionBuilder)]
//! pub struct Drink;
//!
//! fn drink_action_system(
//! mut thirsts: Query<&mut Thirst>,
//! mut query: Query<(&Actor, &mut ActionState), With<Drink>>,
//! ) {
//! for (Actor(actor), mut state) in query.iter_mut() {
//! if let Ok(mut thirst) = thirsts.get_mut(*actor) {
//! match *state {
//! ActionState::Requested => {
//! thirst.thirst = 10.0;
//! *state = ActionState::Success;
//! }
//! ActionState::Cancelled => {
//! *state = ActionState::Failure;
//! }
//! _ => {}
//! }
//! }
//! }
//! }
//! ```
//!
//! #### Thinkers
//!
//! Finally, you can use it when define the `Thinker`, which you can attach as
//! a regular Component:
//!
//! ```rust
//! # use bevy::prelude::*;
//! # use big_brain::prelude::*;
//! # #[derive(Debug, Component)]
//! # struct Thirst(f32, f32);
//! # #[derive(Debug, Clone, Component, ScorerBuilder)]
//! # struct Thirsty;
//! # #[derive(Debug, Clone, Component, ActionBuilder)]
//! # struct Drink;
//! fn spawn_entity(cmd: &mut Commands) {
//! cmd.spawn((
//! Thirst(70.0, 2.0),
//! Thinker::build()
//! .picker(FirstToScore { threshold: 0.8 })
//! .when(Thirsty, Drink),
//! ));
//! }
//! ```
//!
//! #### App
//!
//! Once all that's done, we just add our systems and off we go!
//!
//! ```no_run
//! # use bevy::prelude::*;
//! # use big_brain::prelude::*;
//! # fn init_entities() {}
//! # fn thirst_system() {}
//! # fn drink_action_system() {}
//! # fn thirsty_scorer_system() {}
//! fn main() {
//! App::new()
//! .add_plugins(DefaultPlugins)
//! .add_plugins(BigBrainPlugin::new(PreUpdate))
//! .add_systems(Startup, init_entities)
//! .add_systems(Update, thirst_system)
//! .add_systems(PreUpdate, drink_action_system.in_set(BigBrainSet::Actions))
//! .add_systems(PreUpdate, thirsty_scorer_system.in_set(BigBrainSet::Scorers))
//! .run();
//! }
//! ```
//!
//! ### bevy version and MSRV
//!
//! The current version of `big-brain` is compatible with `bevy` 0.12.1.
//!
//! The Minimum Supported Rust Version for `big-brain` should be considered to
//! be the same as `bevy`'s, which as of the time of this writing was "the
//! latest stable release".
//!
//! ### Reflection
//!
//! All relevant `big-brain` types implement the bevy `Reflect` trait, so you
//! should be able to get some useful display info while using things like
//! [`bevy_inspector_egui`](https://crates.io/crates/bevy_inspector_egui).
//!
//! This implementation should **not** be considered stable, and individual
//! fields made visible may change at **any time** and not be considered
//! towards semver. Please use this feature **only for debugging**.
//!
//! ### Contributing
//!
//! 1. Install the latest Rust toolchain (stable supported).
//! 2. `cargo run --example thirst`
//! 3. Happy hacking!
//!
//! ### License
//!
//! This project is licensed under [the Apache-2.0 License](LICENSE.md).
pub mod evaluators;
pub mod pickers;
pub mod actions;
pub mod choices;
pub mod measures;
pub mod scorers;
pub mod thinker;
pub mod prelude {
/*!
Convenience module with the core types you're most likely to use when working with Big Brain. Mean to be used like `use big_brain::prelude::*;`
*/
use super::*;
pub use super::BigBrainPlugin;
pub use super::BigBrainSet;
pub use actions::{ActionBuilder, ActionState, ConcurrentMode, Concurrently, Steps};
pub use big_brain_derive::{ActionBuilder, ScorerBuilder};
pub use evaluators::{Evaluator, LinearEvaluator, PowerEvaluator, SigmoidEvaluator};
pub use measures::{ChebyshevDistance, Measure, WeightedProduct, WeightedSum};
pub use pickers::{FirstToScore, Highest, Picker};
pub use scorers::{
AllOrNothing, EvaluatingScorer, FixedScore, MeasuredScorer, ProductOfScorers, Score,
ScorerBuilder, SumOfScorers, WinningScorer,
};
pub use thinker::{
Action, ActionSpan, Actor, HasThinker, Scorer, ScorerSpan, Thinker, ThinkerBuilder,
};
}
use bevy::{ecs::schedule::ScheduleLabel, prelude::*, utils::intern::Interned};
/// Core [`Plugin`] for Big Brain behavior. Required for any of the
/// [`Thinker`](thinker::Thinker)-related magic to work.
///
/// ### Example
///
/// ```no_run
/// use bevy::prelude::*;
/// use big_brain::prelude::*;
///
/// App::new()
/// .add_plugins((DefaultPlugins, BigBrainPlugin::new(PreUpdate)))
/// // ...insert entities and other systems.
/// .run();
#[derive(Debug, Clone, Reflect)]
#[reflect(from_reflect = false)]
pub struct BigBrainPlugin {
#[reflect(ignore)]
schedule: Interned<dyn ScheduleLabel>,
#[reflect(ignore)]
cleanup_schedule: Interned<dyn ScheduleLabel>,
}
impl BigBrainPlugin {
/// Create the BigBrain plugin which runs the scorers, thinker and actions in the specified
/// schedule
pub fn new(schedule: impl ScheduleLabel) -> Self {
Self {
schedule: schedule.intern(),
cleanup_schedule: Last.intern(),
}
}
/// Overwrite the Schedule that is used to run cleanup tasks. By default this happens in Last.
pub fn set_cleanup_schedule(mut self, cleanup_schedule: impl ScheduleLabel) -> Self {
self.cleanup_schedule = cleanup_schedule.intern();
self
}
}
impl Plugin for BigBrainPlugin {
fn build(&self, app: &mut App) {
app.configure_sets(
self.schedule.intern(),
(
BigBrainSet::Scorers,
BigBrainSet::Thinkers,
BigBrainSet::Actions,
)
.chain(),
)
.configure_sets(self.cleanup_schedule.intern(), BigBrainSet::Cleanup)
.add_systems(
self.schedule.intern(),
(
scorers::fixed_score_system,
scorers::measured_scorers_system,
scorers::all_or_nothing_system,
scorers::sum_of_scorers_system,
scorers::product_of_scorers_system,
scorers::winning_scorer_system,
scorers::evaluating_scorer_system,
)
.in_set(BigBrainSet::Scorers),
)
.add_systems(
self.schedule.intern(),
thinker::thinker_system.in_set(BigBrainSet::Thinkers),
)
.add_systems(
self.schedule.intern(),
(actions::steps_system, actions::concurrent_system).in_set(BigBrainSet::Actions),
)
.add_systems(
self.cleanup_schedule.intern(),
(
thinker::thinker_component_attach_system,
thinker::thinker_component_detach_system,
thinker::actor_gone_cleanup,
)
.in_set(BigBrainSet::Cleanup),
);
}
}
/// [`BigBrainPlugin`] system sets. Use these to schedule your own
/// actions/scorers/etc.
#[derive(Clone, Debug, Hash, Eq, PartialEq, SystemSet, Reflect)]
pub enum BigBrainSet {
/// Scorers are evaluated in this set.
Scorers,
/// Actions are executed in this set.
Actions,
/// Thinkers run their logic in this set.
Thinkers,
/// Various internal cleanup items run in this final set.
Cleanup,
}