1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
#[cfg(test)]
mod tests {
    use crate::keys::SecretKey;
    use crate::plaintext::Plaintext;
    use rand::SeedableRng;

    fn encrypt_decrypt_helper(msg: Vec<i64>, t: i64, q: i64, std_dev: f64) {
        let degree = msg.len();
        let mut rng = rand::rngs::StdRng::seed_from_u64(18);

        let secret_key = SecretKey::generate(degree, &mut rng);
        let public_key = secret_key.public_key_gen(q, std_dev, &mut rng);

        let plaintext = Plaintext::new(msg, t);
        let ciphertext = plaintext.encrypt(&public_key, std_dev, &mut rng);

        let decrypted = ciphertext.decrypt(&secret_key);

        assert_eq!(decrypted.poly(), plaintext.poly() % (t, degree));
    }

    #[test]
    fn encrypt_decrypt() {
        for t in vec![2, 4, 8, 16, 32].iter() {
            encrypt_decrypt_helper(vec![1, 0], *t, 65536, 3.2);
            encrypt_decrypt_helper(vec![3, 2, 1, 0], *t, 65536, 3.2);
            encrypt_decrypt_helper(vec![0, 1, 2, 3, 4, 5, 6, 7], *t, 65536, 3.2);
        }
    }

    fn encrypt_add_sub_decrypt_helper(
        msg_1: Vec<i64>,
        msg_2: Vec<i64>,
        t: i64,
        q: i64,
        std_dev: f64,
    ) {
        let degree = msg_1.len();
        let mut rng = rand::rngs::StdRng::seed_from_u64(19);

        let secret_key = SecretKey::generate(degree, &mut rng);
        let public_key = secret_key.public_key_gen(q, std_dev, &mut rng);

        let plaintext_1 = Plaintext::new(msg_1, t);
        let ciphertext_1 = plaintext_1.encrypt(&public_key, std_dev, &mut rng);
        let decrypted_1 = ciphertext_1.decrypt(&secret_key);
        assert_eq!(decrypted_1.poly(), plaintext_1.poly() % (t, degree));

        let plaintext_2 = Plaintext::new(msg_2, t);
        let ciphertext_2 = plaintext_2.encrypt(&public_key, std_dev, &mut rng);
        let decrypted_2 = ciphertext_2.decrypt(&secret_key);
        assert_eq!(decrypted_2.poly(), plaintext_2.poly() % (t, degree));

        let add_ciphertext = ciphertext_1.clone() + ciphertext_2.clone();
        let decrypted_add = add_ciphertext.decrypt(&secret_key);
        let expected_add = (plaintext_1.poly() + plaintext_2.poly()) % (t, degree);
        assert_eq!(decrypted_add.poly(), expected_add);

        let sub_ciphertext = ciphertext_1.clone() - ciphertext_2;
        let decrypted_sub = sub_ciphertext.decrypt(&secret_key);
        let expected_sub = (plaintext_1.poly() - plaintext_2.poly()) % (t, degree);
        assert_eq!(decrypted_sub.poly(), expected_sub);

        let neg_ciphertext = -ciphertext_1;
        let decrypted_neg = neg_ciphertext.decrypt(&secret_key);
        let expected_neg = -plaintext_1.poly() % (t, degree);
        assert_eq!(decrypted_neg.poly(), expected_neg);
    }

    #[test]
    fn encrypt_add_sub_decrypt() {
        for t in vec![2, 4, 8, 16, 32].iter() {
            encrypt_add_sub_decrypt_helper(vec![0, 6], vec![7, 2], *t, 65536, 3.2);
            encrypt_add_sub_decrypt_helper(vec![3, 2, 1, 0], vec![1, 2, 3, 4], *t, 65536, 3.2);
            encrypt_add_sub_decrypt_helper(
                vec![0, 1, 2, 3, 4, 5, 6, 7],
                vec![7, 6, 5, 4, 3, 2, 1, 0],
                *t,
                65536,
                3.2,
            );
        }
    }

    fn basic_mul_helper(msg_1: Vec<i64>, msg_2: Vec<i64>, t: i64, q: i64, std_dev: f64) {
        let degree = msg_1.len();
        let mut rng = rand::rngs::StdRng::seed_from_u64(20);

        let secret_key = SecretKey::generate(degree, &mut rng);
        let public_key = secret_key.public_key_gen(q, std_dev, &mut rng);

        let plaintext_1 = Plaintext::new(msg_1, t);
        let ciphertext_1 = plaintext_1.encrypt(&public_key, std_dev, &mut rng);
        let plaintext_2 = Plaintext::new(msg_2, t);
        let ciphertext_2 = plaintext_2.encrypt(&public_key, std_dev, &mut rng);

        // Multiply without relinearizing
        let (c_0, c_1, c_2) = ciphertext_1.clone().basic_mul(ciphertext_2.clone());

        // Decrypt non-relinearized multilication output
        let s = secret_key.poly;
        let delta_inv = t as f64 / q as f64;
        let raw = c_0.clone() + c_1.clone() * s.clone() + c_2.clone() * s.clone() * s.clone();
        let decrypted_mul = (raw * delta_inv) % (t, degree);

        assert_eq!(
            decrypted_mul,
            (plaintext_1.poly() * plaintext_2.poly()) % (t, degree)
        );
    }

    // Test that ciphertext multiplication without relinearization encrypt/decrypts correctly
    #[test]
    fn basic_mul_test() {
        for t in vec![2, 4, 8, 16, 32].iter() {
            basic_mul_helper(vec![0, 6], vec![7, 2], *t, 65536, 1.0);
            basic_mul_helper(vec![3, 2, 1, 0], vec![1, 2, 3, 4], *t, 65536, 1.0);
        }
    }

    fn relin_1_mul_helper(
        msg_1: Vec<i64>,
        msg_2: Vec<i64>,
        t: i64,
        q: i64,
        std_dev: f64,
        base: i64,
    ) {
        let degree = msg_1.len();
        let mut rng = rand::rngs::StdRng::seed_from_u64(21);

        let secret_key = SecretKey::generate(degree, &mut rng);
        let public_key = secret_key.public_key_gen(q, std_dev, &mut rng);

        let plaintext_1 = Plaintext::new(msg_1, t);
        let ciphertext_1 = plaintext_1.encrypt(&public_key, std_dev, &mut rng);
        let plaintext_2 = Plaintext::new(msg_2, t);
        let ciphertext_2 = plaintext_2.encrypt(&public_key, std_dev, &mut rng);

        // Homomorphic multiplication with relinearization
        let rlk_1 = secret_key.relin_key_gen_1(q, std_dev, &mut rng, base);
        let mul_ciphertext = ciphertext_1.clone() * (ciphertext_2.clone(), &rlk_1);
        let decrypted_mul = mul_ciphertext.decrypt(&secret_key);
        assert_eq!(
            decrypted_mul.poly(),
            (plaintext_1.poly() * plaintext_2.poly()) % (t, degree)
        );
    }

    // Test that ciphertext multiplication using relinearization Version #1 encrypt/decrypts correctly
    #[test]
    fn relin_1_mul_test() {
        let q = 65536;
        // Choosing T = ceil(sqrt(q)) to minimize relinearisation time and space.
        // This can be toggled to be smaller so that the error introduced is smaller.
        // With this base choice, we can tolerate error to std_dev=1.5.
        let base_sqrt = (q as f64).sqrt().ceil() as i64;
        let std_dev_sqrt = 1.5;

        for t in vec![4, 8, 16, 32].iter() {
            relin_1_mul_helper(vec![0, 1], vec![0, 0], *t, q, std_dev_sqrt, base_sqrt);
            relin_1_mul_helper(
                vec![3, 2, 1, 0],
                vec![1, 2, 3, 4],
                *t,
                q,
                std_dev_sqrt,
                base_sqrt,
            );
            relin_1_mul_helper(
                vec![0, 1, 2, 3, 0, 1, 2, 3],
                vec![3, 2, 1, 0, 3, 2, 1, 0],
                *t,
                q,
                std_dev_sqrt,
                base_sqrt,
            );
        }

        // Choosing T = log_2(q) to decrease error at the cost of relinearisation time and space.
        // With this base choice, we can tolerate error to std_dev=2.9.
        let base_log = (q as f64).log2() as i64;
        let std_dev_log = 2.9;

        for t in vec![4, 8, 16, 32].iter() {
            relin_1_mul_helper(vec![0, 1], vec![0, 0], *t, q, std_dev_log, base_log);
            relin_1_mul_helper(
                vec![3, 2, 1, 0],
                vec![1, 2, 3, 4],
                *t,
                q,
                std_dev_log,
                base_log,
            );
            relin_1_mul_helper(
                vec![0, 1, 2, 3, 0, 1, 2, 3],
                vec![3, 2, 1, 0, 3, 2, 1, 0],
                *t,
                q,
                std_dev_log,
                base_log,
            );
        }
    }

    fn relin_2_mul_helper(msg_1: Vec<i64>, msg_2: Vec<i64>, t: i64, q: i64, std_dev: f64, p: i64) {
        let degree = msg_1.len();
        let mut rng = rand::rngs::StdRng::seed_from_u64(22);

        let secret_key = SecretKey::generate(degree, &mut rng);
        let public_key = secret_key.public_key_gen(q, std_dev, &mut rng);

        let plaintext_1 = Plaintext::new(msg_1, t);
        let ciphertext_1 = plaintext_1.encrypt(&public_key, std_dev, &mut rng);
        let plaintext_2 = Plaintext::new(msg_2, t);
        let ciphertext_2 = plaintext_2.encrypt(&public_key, std_dev, &mut rng);

        // Homomorphic multiplication with relinearization
        let rlk_2 = secret_key.relin_key_gen_2(q, std_dev, &mut rng, p);
        let mul_ciphertext = ciphertext_1.clone() * (ciphertext_2.clone(), &rlk_2);
        let decrypted_mul = mul_ciphertext.decrypt(&secret_key);
        assert_eq!(
            decrypted_mul.poly(),
            (plaintext_1.poly() * plaintext_2.poly()) % (t, degree)
        );
    }

    // Test that ciphertext multiplication using relinearization Version #2 encrypt/decrypts correctly
    #[test]
    fn relin_2_mul_test() {
        let q = 65536;
        // Technically p should be >= q^3 for security (see paper discussion on Relinearization Version 2),
        // but setting p = q^3 results in an overflow when taking p * q so we will test with a smaller p.
        let p = 2_i64.pow(13) * q;
        let std_dev = 2.0;

        for t in vec![4, 8, 16, 32].iter() {
            relin_2_mul_helper(vec![0, 1], vec![0, 0], *t, q, std_dev, p);
            relin_2_mul_helper(vec![3, 2, 1, 0], vec![1, 2, 3, 4], *t, q, std_dev, p);
            relin_2_mul_helper(
                vec![0, 1, 2, 3, 0, 1, 2, 3],
                vec![3, 2, 1, 0, 3, 2, 1, 0],
                *t,
                q,
                std_dev,
                p,
            );
        }
    }

    #[test]
    fn end_to_end_test() {
        for _ in 0..1000 {
            let q = 65536;
            let t = 16;
            let std_dev = 3.2;
            let degree = 4;
            let rlk_base = (q as f64).log2() as i64;
            let mut rng = rand::rngs::StdRng::seed_from_u64(23);

            let secret_key = SecretKey::generate(degree, &mut rng);
            let public_key = secret_key.public_key_gen(q, std_dev, &mut rng);
            let rlk_1 = secret_key.relin_key_gen_1(q, std_dev, &mut rng, rlk_base);

            let pt_1 = Plaintext::rand(degree, t, &mut rng);
            let pt_2 = Plaintext::rand(degree, t, &mut rng);
            let pt_3 = Plaintext::rand(degree, t, &mut rng);
            let pt_4 = Plaintext::rand(degree, t, &mut rng);

            let ct_1 = pt_1.encrypt(&public_key, std_dev, &mut rng);
            let ct_2 = pt_2.encrypt(&public_key, std_dev, &mut rng);
            let ct_3 = pt_3.encrypt(&public_key, std_dev, &mut rng);
            let ct_4 = pt_4.encrypt(&public_key, std_dev, &mut rng);

            let expr_ct = ct_1 * (ct_2, &rlk_1) + ct_3 * (ct_4, &rlk_1);
            let expr_pt = expr_ct.decrypt(&secret_key);

            let expected_pt = (pt_1.poly() * pt_2.poly() + pt_3.poly() * pt_4.poly()) % (t, degree);
            assert_eq!(expr_pt.poly(), expected_pt);
        }
    }
}