bevy_fixed_update_task 0.1.2

A fixed update for bevy, unthrottled from bevy's default update loop.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
//! This example showcases how interpolation can be implemented with this crate.

use bevy::{
    color::palettes::{
        css::WHITE,
        tailwind::{CYAN_400, RED_400},
    },
    ecs::schedule::ScheduleLabel,
    prelude::*,
};
use bevy_fixed_update_task::{
    BackgroundFixedUpdatePlugin, PostWriteBack, PreWriteBack, TaskResults, TaskToRenderTime,
    TaskWorker, Timestep,
};
use bevy_transform_interpolation::{
    prelude::*, RotationEasingState, ScaleEasingState, TransformEasingSet, TranslationEasingState,
};
use task_user::{AngularVelocity, LinearVelocity, TaskSleepTime, TaskWorkerTraitImpl, ToMove};

use std::time::Duration;

const MOVEMENT_SPEED: f32 = 250.0;
const ROTATION_SPEED: f32 = 2.0;

fn main() {
    let mut app = App::new();

    let easing_plugin = TransformEasingPlugin {
        schedule_fixed_first: PreWriteBack.intern(),
        schedule_fixed_last: PostWriteBack.intern(),
        schedule_fixed_loop: bevy::app::prelude::RunFixedMainLoop.intern(),
        after_fixed_main_loop: RunFixedMainLoopSystem::AfterFixedMainLoop.intern(),
        update_easing_values: false,
    };
    let interpolation_plugin = TransformInterpolationPlugin {
        schedule_fixed_first: PreWriteBack.intern(),
        schedule_fixed_last: PostWriteBack.intern(),
        interpolate_translation_all: false,
        interpolate_rotation_all: false,
        interpolate_scale_all: false,
    };

    // Add the `TransformInterpolationPlugin` to the app to enable transform interpolation.
    app.add_plugins((
        DefaultPlugins,
        BackgroundFixedUpdatePlugin::<task_user::TaskWorkerTraitImpl>::default(),
        easing_plugin,
        interpolation_plugin,
    ));

    // Setup the scene and UI, and update text in `Update`.
    app.add_systems(Startup, (setup, setup_text)).add_systems(
        bevy::app::prelude::RunFixedMainLoop,
        (
            change_timestep,
            change_sleep_time,
            update_timestep_text,
            update_sleep_time_text,
            update_diff_to_render_text,
        ),
    );

    app.add_systems(
        bevy::app::prelude::RunFixedMainLoop,
        (ease_translation_lerp, ease_rotation_slerp, ease_scale_lerp)
            .in_set(TransformEasingSet::Ease),
    );

    // Run the app.
    app.run();
}

/// Eases the translations of entities with linear interpolation.
fn ease_translation_lerp(
    mut query: Query<(&mut Transform, &TranslationEasingState)>,
    time: Query<(&TaskToRenderTime, &Timestep)>,
) {
    let Ok((time, timestep)) = time.get_single() else {
        return;
    };
    let overstep = (time.diff.max(0.0) / timestep.timestep.as_secs_f64()).min(1.0) as f32;
    query.iter_mut().for_each(|(mut transform, interpolation)| {
        if let (Some(start), Some(end)) = (interpolation.start, interpolation.end) {
            transform.translation = start.lerp(end, overstep);
        }
    });
}

/// Eases the rotations of entities with spherical linear interpolation.
fn ease_rotation_slerp(
    mut query: Query<(&mut Transform, &RotationEasingState)>,
    time: Query<(&TaskToRenderTime, &Timestep)>,
) {
    let Ok((time, timestep)) = time.get_single() else {
        return;
    };
    let overstep = (time.diff.max(0.0) / timestep.timestep.as_secs_f64()).min(1.0) as f32;

    query
        .par_iter_mut()
        .for_each(|(mut transform, interpolation)| {
            if let (Some(start), Some(end)) = (interpolation.start, interpolation.end) {
                // Note: `slerp` will always take the shortest path, but when the two rotations are more than
                // 180 degrees apart, this can cause visual artifacts as the rotation "flips" to the other side.
                transform.rotation = start.slerp(end, overstep);
            }
        });
}

/// Eases the scales of entities with linear interpolation.
fn ease_scale_lerp(
    mut query: Query<(&mut Transform, &ScaleEasingState)>,
    time: Query<(&TaskToRenderTime, &Timestep)>,
) {
    let Ok((time, timestep)) = time.get_single() else {
        return;
    };
    let overstep = (time.diff.max(0.0) / timestep.timestep.as_secs_f64()).min(1.0) as f32;

    query.iter_mut().for_each(|(mut transform, interpolation)| {
        if let (Some(start), Some(end)) = (interpolation.start, interpolation.end) {
            transform.scale = start.lerp(end, overstep);
        }
    });
}

fn setup(
    mut commands: Commands,
    mut materials: ResMut<Assets<ColorMaterial>>,
    mut meshes: ResMut<Assets<Mesh>>,
) {
    // Spawn a camera.
    commands.spawn(Camera2d);

    let mesh = meshes.add(Rectangle::from_length(60.0));

    // Sets the "fake performance" to 2.1Hz, just fast enough for the execution to not lag.
    commands.insert_resource(TaskSleepTime(Duration::from_secs_f32(1.0 / 2.1)));
    commands.spawn((
        Timestep {
            // Set the fixed timestep to just 2 Hz for demonstration purposes.
            timestep: Duration::from_secs_f32(1.0 / 2.0),
        },
        TaskResults::<TaskWorkerTraitImpl>::default(),
        TaskWorker {
            worker: TaskWorkerTraitImpl {},
        },
    ));

    // This entity uses transform interpolation.
    commands.spawn((
        Name::new("Interpolation"),
        Mesh2d(mesh.clone()),
        MeshMaterial2d(materials.add(Color::from(CYAN_400)).clone()),
        Transform::from_xyz(-500.0, 60.0, 0.0),
        TransformInterpolation,
        LinearVelocity(Vec2::new(MOVEMENT_SPEED, 0.0)),
        AngularVelocity(ROTATION_SPEED),
        ToMove,
    ));

    // This entity is simulated in `FixedUpdate` without any smoothing.
    commands.spawn((
        Name::new("No Interpolation"),
        Mesh2d(mesh.clone()),
        MeshMaterial2d(materials.add(Color::from(RED_400)).clone()),
        Transform::from_xyz(-500.0, -60.0, 0.0),
        LinearVelocity(Vec2::new(MOVEMENT_SPEED, 0.0)),
        AngularVelocity(ROTATION_SPEED),
        ToMove,
    ));
}

/// Changes the timestep of the simulation when the up or down arrow keys are pressed.
fn change_timestep(mut time: Query<&mut Timestep>, keyboard_input: Res<ButtonInput<KeyCode>>) {
    let mut time = time.single_mut();
    if keyboard_input.pressed(KeyCode::ArrowUp) {
        let new_timestep = (time.timestep.as_secs_f64() * 0.9).max(1.0 / 255.0);
        time.timestep = Duration::from_secs_f64(new_timestep);
    }
    if keyboard_input.pressed(KeyCode::ArrowDown) {
        let new_timestep = (time.timestep.as_secs_f64() * 1.1)
            .min(1.0)
            .max(1.0 / 255.0);
        time.timestep = Duration::from_secs_f64(new_timestep);
    }
}

/// Changes the timestep of the simulation when the up or down arrow keys are pressed.
fn change_sleep_time(
    mut sleep_time: ResMut<TaskSleepTime>,
    keyboard_input: Res<ButtonInput<KeyCode>>,
) {
    if keyboard_input.pressed(KeyCode::ArrowRight) {
        let new_sleep_time = (sleep_time.0.as_secs_f64() * 0.9).max(1.0 / 255.0);
        sleep_time.0 = Duration::from_secs_f64(new_sleep_time);
    }
    if keyboard_input.pressed(KeyCode::ArrowLeft) {
        let new_sleep_time = (sleep_time.0.as_secs_f64() * 1.1).min(1.0).max(1.0 / 255.0);
        sleep_time.0 = Duration::from_secs_f64(new_sleep_time);
    }
}

#[derive(Component)]
struct TimestepText;

#[derive(Component)]
struct SleepTimeText;

#[derive(Component)]
struct TaskToRenderTimeText;

fn setup_text(mut commands: Commands) {
    let font = TextFont {
        font_size: 20.0,
        ..default()
    };

    commands
        .spawn((
            Text::new("Fixed Hz: "),
            TextColor::from(WHITE),
            font.clone(),
            Node {
                position_type: PositionType::Absolute,
                top: Val::Px(10.0),
                left: Val::Px(10.0),
                ..default()
            },
        ))
        .with_child((TimestepText, TextSpan::default()));

    commands.spawn((
        Text::new("Change Timestep With Up/Down Arrow"),
        TextColor::from(WHITE),
        font.clone(),
        Node {
            position_type: PositionType::Absolute,
            top: Val::Px(10.0),
            right: Val::Px(10.0),
            ..default()
        },
    ));
    commands.spawn((
        Text::new("Change simulation performance With Right/Left Arrow"),
        TextColor::from(WHITE),
        font.clone(),
        Node {
            position_type: PositionType::Absolute,
            top: Val::Px(35.0),
            right: Val::Px(10.0),
            ..default()
        },
    ));

    commands.spawn((
        Text::new("Interpolation"),
        TextColor::from(CYAN_400),
        font.clone(),
        Node {
            position_type: PositionType::Absolute,
            top: Val::Px(50.0),
            left: Val::Px(10.0),
            ..default()
        },
    ));

    commands.spawn((
        Text::new("No Interpolation"),
        TextColor::from(RED_400),
        font.clone(),
        Node {
            position_type: PositionType::Absolute,
            top: Val::Px(75.0),
            left: Val::Px(10.0),
            ..default()
        },
    ));

    commands
        .spawn((
            Text::new("Diff to render time: "),
            TextColor::from(WHITE),
            font.clone(),
            Node {
                position_type: PositionType::Absolute,
                top: Val::Px(100.0),
                left: Val::Px(10.0),
                ..default()
            },
        ))
        .with_child((TaskToRenderTimeText, TextSpan::default()));

    commands
        .spawn((
            Text::new("Fixed update logic computing time: "),
            TextColor::from(WHITE),
            font.clone(),
            Node {
                position_type: PositionType::Absolute,
                top: Val::Px(125.0),
                left: Val::Px(10.0),
                ..default()
            },
        ))
        .with_child((SleepTimeText, TextSpan::default()));
}

fn update_timestep_text(
    mut text: Single<&mut TextSpan, With<TimestepText>>,
    time: Query<&Timestep>,
) {
    let timestep = time.single().timestep.as_secs_f32();
    text.0 = format!("{:.2} ({timestep:.3}s)", timestep.recip());
}

fn update_sleep_time_text(
    mut text: Single<&mut TextSpan, With<SleepTimeText>>,
    sleep_time: Res<TaskSleepTime>,
) {
    let timestep = sleep_time.0.as_secs_f32();
    text.0 = format!("{:.2} Hz ({timestep:.3}s)", timestep.recip());
}

fn update_diff_to_render_text(
    mut text: Single<&mut TextSpan, With<TaskToRenderTimeText>>,
    task_to_render: Single<&TaskToRenderTime>,
) {
    text.0 = format!("{:.2}", task_to_render.diff);
}

pub mod task_user {
    use std::{slice::IterMut, time::Duration};

    use bevy::prelude::*;
    use bevy_fixed_update_task::TaskWorkerTrait;

    #[derive(Resource)]
    pub struct TaskSleepTime(pub Duration);

    #[derive(Debug, Clone, Default)]
    pub struct TaskWorkerTraitImpl;

    impl TaskWorkerTrait for TaskWorkerTraitImpl {
        type TaskExtractedData = TaskExtractedData;
        type TaskResultPure = Vec<(Entity, Transform, LinearVelocity, AngularVelocity)>;

        fn work(
            &self,
            _worker: Entity,
            mut input: TaskExtractedData,
            timestep: Duration,
            substep_count: u32,
        ) -> Vec<(Entity, Transform, LinearVelocity, AngularVelocity)> {
            let simulated_time = timestep * substep_count;
            // Simulate an expensive task
            std::thread::sleep(input.sleep_time);

            // Move entities in a fixed amount of time. The movement should appear smooth for interpolated entities.
            flip_movement_direction(
                input
                    .data
                    .iter_mut()
                    .map(|(_, transform, lin_vel, _)| (transform, lin_vel))
                    .collect::<Vec<_>>()
                    .iter_mut(),
            );
            movement(
                input
                    .data
                    .iter_mut()
                    .map(|(_, transform, lin_vel, _)| (transform, lin_vel))
                    .collect::<Vec<_>>()
                    .iter_mut(),
                simulated_time,
            );
            rotate(
                input
                    .data
                    .iter_mut()
                    .map(|(_, transform, _, ang_vel)| (transform, ang_vel))
                    .collect::<Vec<_>>()
                    .iter_mut(),
                simulated_time,
            );
            input.data
        }

        fn extract(&self, _worker_entity: Entity, world: &mut World) -> TaskExtractedData {
            // TODO: use a system rather than a world.
            let mut query = world.query_filtered::<
                            (Entity, &Transform, &LinearVelocity, &AngularVelocity),
                            With<ToMove>,
                        >();

            let transforms_to_move: Vec<(Entity, Transform, LinearVelocity, AngularVelocity)> =
                query
                    .iter(world)
                    .map(|(entity, transform, lin_vel, ang_vel)| {
                        (entity, transform.clone(), lin_vel.clone(), ang_vel.clone())
                    })
                    .collect();
            let sleep_time = world.get_resource::<TaskSleepTime>().unwrap().0;
            TaskExtractedData {
                data: transforms_to_move,
                sleep_time,
            }
        }

        fn write_back(
            &self,
            _worker_entity: Entity,
            result: bevy_fixed_update_task::TaskResult<Self>,
            mut world: &mut World,
        ) {
            let mut q_transforms =
                world.query_filtered::<(&mut Transform, &mut LinearVelocity), With<ToMove>>();
            for (entity, new_transform, new_lin_vel, _) in result.result_raw.result.iter() {
                if let Ok((mut transform, mut lin_vel)) = q_transforms.get_mut(&mut world, *entity)
                {
                    *transform = *new_transform;
                    *lin_vel = new_lin_vel.clone();
                }
            }
        }
    }

    #[derive(Debug, Component, Clone)]
    pub struct TaskExtractedData {
        pub data: Vec<(Entity, Transform, LinearVelocity, AngularVelocity)>,
        pub sleep_time: Duration,
    }

    /// The linear velocity of an entity indicating its movement speed and direction.
    #[derive(Component, Debug, Clone, Deref, DerefMut)]
    pub struct LinearVelocity(pub Vec2);

    /// The angular velocity of an entity indicating its rotation speed.
    #[derive(Component, Debug, Clone, Deref, DerefMut)]
    pub struct AngularVelocity(pub f32);

    #[derive(Component, Debug, Clone)]
    pub struct ToMove;

    /// Flips the movement directions of objects when they reach the left or right side of the screen.
    fn flip_movement_direction(query: IterMut<(&mut Transform, &mut LinearVelocity)>) {
        for (transform, lin_vel) in query {
            if transform.translation.x > 500.0 && lin_vel.0.x > 0.0 {
                lin_vel.0 = Vec2::new(-lin_vel.x.abs(), 0.0);
            } else if transform.translation.x < -500.0 && lin_vel.0.x < 0.0 {
                lin_vel.0 = Vec2::new(lin_vel.x.abs(), 0.0);
            }
        }
    }

    /// Moves entities based on their `LinearVelocity`.
    fn movement(query: IterMut<(&mut Transform, &mut LinearVelocity)>, delta: Duration) {
        let delta_secs = delta.as_secs_f32();
        for (transform, lin_vel) in query {
            transform.translation += lin_vel.extend(0.0) * delta_secs;
        }
    }

    /// Rotates entities based on their `AngularVelocity`.
    fn rotate(query: IterMut<(&mut Transform, &mut AngularVelocity)>, delta: Duration) {
        let delta_secs = delta.as_secs_f32();
        for (transform, ang_vel) in query {
            transform.rotate_local_z(ang_vel.0 * delta_secs);
        }
    }
}