bevy_animation 0.17.3

Provides animation functionality for Bevy Engine
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
//! Concrete curve structures used to load glTF curves into the animation system.

use bevy_math::{
    curve::{cores::*, iterable::IterableCurve, *},
    vec4, Quat, Vec4, VectorSpace,
};
use bevy_reflect::Reflect;
use either::Either;
use thiserror::Error;

/// A keyframe-defined curve that "interpolates" by stepping at `t = 1.0` to the next keyframe.
#[derive(Debug, Clone, Reflect)]
pub struct SteppedKeyframeCurve<T> {
    core: UnevenCore<T>,
}

impl<T> Curve<T> for SteppedKeyframeCurve<T>
where
    T: Clone,
{
    #[inline]
    fn domain(&self) -> Interval {
        self.core.domain()
    }

    #[inline]
    fn sample_clamped(&self, t: f32) -> T {
        self.core
            .sample_with(t, |x, y, t| if t >= 1.0 { y.clone() } else { x.clone() })
    }

    #[inline]
    fn sample_unchecked(&self, t: f32) -> T {
        self.sample_clamped(t)
    }
}

impl<T> SteppedKeyframeCurve<T> {
    /// Create a new [`SteppedKeyframeCurve`]. If the curve could not be constructed from the
    /// given data, an error is returned.
    #[inline]
    pub fn new(timed_samples: impl IntoIterator<Item = (f32, T)>) -> Result<Self, UnevenCoreError> {
        Ok(Self {
            core: UnevenCore::new(timed_samples)?,
        })
    }
}

/// A keyframe-defined curve that uses cubic spline interpolation, backed by a contiguous buffer.
#[derive(Debug, Clone, Reflect)]
pub struct CubicKeyframeCurve<T> {
    // Note: the sample width here should be 3.
    core: ChunkedUnevenCore<T>,
}

impl<V> Curve<V> for CubicKeyframeCurve<V>
where
    V: VectorSpace<Scalar = f32>,
{
    #[inline]
    fn domain(&self) -> Interval {
        self.core.domain()
    }

    #[inline]
    fn sample_clamped(&self, t: f32) -> V {
        match self.core.sample_interp_timed(t) {
            // In all the cases where only one frame matters, defer to the position within it.
            InterpolationDatum::Exact((_, v))
            | InterpolationDatum::LeftTail((_, v))
            | InterpolationDatum::RightTail((_, v)) => v[1],

            InterpolationDatum::Between((t0, u), (t1, v), s) => {
                cubic_spline_interpolation(u[1], u[2], v[0], v[1], s, t1 - t0)
            }
        }
    }

    #[inline]
    fn sample_unchecked(&self, t: f32) -> V {
        self.sample_clamped(t)
    }
}

impl<T> CubicKeyframeCurve<T> {
    /// Create a new [`CubicKeyframeCurve`] from keyframe `times` and their associated `values`.
    /// Because 3 values are needed to perform cubic interpolation, `values` must have triple the
    /// length of `times` — each consecutive triple `a_k, v_k, b_k` associated to time `t_k`
    /// consists of:
    /// - The in-tangent `a_k` for the sample at time `t_k`
    /// - The actual value `v_k` for the sample at time `t_k`
    /// - The out-tangent `b_k` for the sample at time `t_k`
    ///
    /// For example, for a curve built from two keyframes, the inputs would have the following form:
    /// - `times`: `[t_0, t_1]`
    /// - `values`: `[a_0, v_0, b_0, a_1, v_1, b_1]`
    #[inline]
    pub fn new(
        times: impl IntoIterator<Item = f32>,
        values: impl IntoIterator<Item = T>,
    ) -> Result<Self, ChunkedUnevenCoreError> {
        Ok(Self {
            core: ChunkedUnevenCore::new(times, values, 3)?,
        })
    }
}

// NOTE: We can probably delete `CubicRotationCurve` once we improve the `Reflect` implementations
// for the `Curve` API adaptors; this is basically a `CubicKeyframeCurve` composed with `map`.

/// A keyframe-defined curve that uses cubic spline interpolation, special-cased for quaternions
/// since it uses `Vec4` internally.
#[derive(Debug, Clone, Reflect)]
#[reflect(Clone)]
pub struct CubicRotationCurve {
    // Note: The sample width here should be 3.
    core: ChunkedUnevenCore<Vec4>,
}

impl Curve<Quat> for CubicRotationCurve {
    #[inline]
    fn domain(&self) -> Interval {
        self.core.domain()
    }

    #[inline]
    fn sample_clamped(&self, t: f32) -> Quat {
        let vec = match self.core.sample_interp_timed(t) {
            // In all the cases where only one frame matters, defer to the position within it.
            InterpolationDatum::Exact((_, v))
            | InterpolationDatum::LeftTail((_, v))
            | InterpolationDatum::RightTail((_, v)) => v[1],

            InterpolationDatum::Between((t0, u), (t1, v), s) => {
                cubic_spline_interpolation(u[1], u[2], v[0], v[1], s, t1 - t0)
            }
        };
        Quat::from_vec4(vec.normalize())
    }

    #[inline]
    fn sample_unchecked(&self, t: f32) -> Quat {
        self.sample_clamped(t)
    }
}

impl CubicRotationCurve {
    /// Create a new [`CubicRotationCurve`] from keyframe `times` and their associated `values`.
    /// Because 3 values are needed to perform cubic interpolation, `values` must have triple the
    /// length of `times` — each consecutive triple `a_k, v_k, b_k` associated to time `t_k`
    /// consists of:
    /// - The in-tangent `a_k` for the sample at time `t_k`
    /// - The actual value `v_k` for the sample at time `t_k`
    /// - The out-tangent `b_k` for the sample at time `t_k`
    ///
    /// For example, for a curve built from two keyframes, the inputs would have the following form:
    /// - `times`: `[t_0, t_1]`
    /// - `values`: `[a_0, v_0, b_0, a_1, v_1, b_1]`
    ///
    /// To sample quaternions from this curve, the resulting interpolated `Vec4` output is normalized
    /// and interpreted as a quaternion.
    pub fn new(
        times: impl IntoIterator<Item = f32>,
        values: impl IntoIterator<Item = Vec4>,
    ) -> Result<Self, ChunkedUnevenCoreError> {
        Ok(Self {
            core: ChunkedUnevenCore::new(times, values, 3)?,
        })
    }
}

/// A keyframe-defined curve that uses linear interpolation over many samples at once, backed
/// by a contiguous buffer.
#[derive(Debug, Clone, Reflect)]
pub struct WideLinearKeyframeCurve<T> {
    // Here the sample width is the number of things to simultaneously interpolate.
    core: ChunkedUnevenCore<T>,
}

impl<T> IterableCurve<T> for WideLinearKeyframeCurve<T>
where
    T: VectorSpace<Scalar = f32>,
{
    #[inline]
    fn domain(&self) -> Interval {
        self.core.domain()
    }

    #[inline]
    fn sample_iter_clamped(&self, t: f32) -> impl Iterator<Item = T> {
        match self.core.sample_interp(t) {
            InterpolationDatum::Exact(v)
            | InterpolationDatum::LeftTail(v)
            | InterpolationDatum::RightTail(v) => Either::Left(v.iter().copied()),

            InterpolationDatum::Between(u, v, s) => {
                let interpolated = u.iter().zip(v.iter()).map(move |(x, y)| x.lerp(*y, s));
                Either::Right(interpolated)
            }
        }
    }

    #[inline]
    fn sample_iter_unchecked(&self, t: f32) -> impl Iterator<Item = T> {
        self.sample_iter_clamped(t)
    }
}

impl<T> WideLinearKeyframeCurve<T> {
    /// Create a new [`WideLinearKeyframeCurve`]. An error will be returned if:
    /// - `values` has length zero.
    /// - `times` has less than `2` unique valid entries.
    /// - The length of `values` is not divisible by that of `times` (once sorted, filtered,
    ///   and deduplicated).
    #[inline]
    pub fn new(
        times: impl IntoIterator<Item = f32>,
        values: impl IntoIterator<Item = T>,
    ) -> Result<Self, WideKeyframeCurveError> {
        Ok(Self {
            core: ChunkedUnevenCore::new_width_inferred(times, values)?,
        })
    }
}

/// A keyframe-defined curve that uses stepped "interpolation" over many samples at once, backed
/// by a contiguous buffer.
#[derive(Debug, Clone, Reflect)]
pub struct WideSteppedKeyframeCurve<T> {
    // Here the sample width is the number of things to simultaneously interpolate.
    core: ChunkedUnevenCore<T>,
}

impl<T> IterableCurve<T> for WideSteppedKeyframeCurve<T>
where
    T: Clone,
{
    #[inline]
    fn domain(&self) -> Interval {
        self.core.domain()
    }

    #[inline]
    fn sample_iter_clamped(&self, t: f32) -> impl Iterator<Item = T> {
        match self.core.sample_interp(t) {
            InterpolationDatum::Exact(v)
            | InterpolationDatum::LeftTail(v)
            | InterpolationDatum::RightTail(v) => Either::Left(v.iter().cloned()),

            InterpolationDatum::Between(u, v, s) => {
                let interpolated =
                    u.iter()
                        .zip(v.iter())
                        .map(move |(x, y)| if s >= 1.0 { y.clone() } else { x.clone() });
                Either::Right(interpolated)
            }
        }
    }

    #[inline]
    fn sample_iter_unchecked(&self, t: f32) -> impl Iterator<Item = T> {
        self.sample_iter_clamped(t)
    }
}

impl<T> WideSteppedKeyframeCurve<T> {
    /// Create a new [`WideSteppedKeyframeCurve`]. An error will be returned if:
    /// - `values` has length zero.
    /// - `times` has less than `2` unique valid entries.
    /// - The length of `values` is not divisible by that of `times` (once sorted, filtered,
    ///   and deduplicated).
    #[inline]
    pub fn new(
        times: impl IntoIterator<Item = f32>,
        values: impl IntoIterator<Item = T>,
    ) -> Result<Self, WideKeyframeCurveError> {
        Ok(Self {
            core: ChunkedUnevenCore::new_width_inferred(times, values)?,
        })
    }
}

/// A keyframe-defined curve that uses cubic interpolation over many samples at once, backed by a
/// contiguous buffer.
#[derive(Debug, Clone, Reflect)]
pub struct WideCubicKeyframeCurve<T> {
    core: ChunkedUnevenCore<T>,
}

impl<T> IterableCurve<T> for WideCubicKeyframeCurve<T>
where
    T: VectorSpace<Scalar = f32>,
{
    #[inline]
    fn domain(&self) -> Interval {
        self.core.domain()
    }

    fn sample_iter_clamped(&self, t: f32) -> impl Iterator<Item = T> {
        match self.core.sample_interp_timed(t) {
            InterpolationDatum::Exact((_, v))
            | InterpolationDatum::LeftTail((_, v))
            | InterpolationDatum::RightTail((_, v)) => {
                // Pick out the part of this that actually represents the position (instead of tangents),
                // which is the middle third.
                let width = self.core.width();
                Either::Left(v[width..(width * 2)].iter().copied())
            }

            InterpolationDatum::Between((t0, u), (t1, v), s) => Either::Right(
                cubic_spline_interpolate_slices(self.core.width() / 3, u, v, s, t1 - t0),
            ),
        }
    }

    #[inline]
    fn sample_iter_unchecked(&self, t: f32) -> impl Iterator<Item = T> {
        self.sample_iter_clamped(t)
    }
}

/// An error indicating that a multisampling keyframe curve could not be constructed.
#[derive(Debug, Error)]
#[error("unable to construct a curve using this data")]
pub enum WideKeyframeCurveError {
    /// The number of given values was not divisible by a multiple of the number of keyframes.
    #[error("number of values ({values_given}) is not divisible by {divisor}")]
    LengthMismatch {
        /// The number of values given.
        values_given: usize,
        /// The number that `values_given` was supposed to be divisible by.
        divisor: usize,
    },
    /// An error was returned by the internal core constructor.
    #[error(transparent)]
    CoreError(#[from] ChunkedUnevenCoreError),
}

impl<T> WideCubicKeyframeCurve<T> {
    /// Create a new [`WideCubicKeyframeCurve`].
    ///
    /// An error will be returned if:
    /// - `values` has length zero.
    /// - `times` has less than `2` unique valid entries.
    /// - The length of `values` is not divisible by three times that of `times` (once sorted,
    ///   filtered, and deduplicated).
    #[inline]
    pub fn new(
        times: impl IntoIterator<Item = f32>,
        values: impl IntoIterator<Item = T>,
    ) -> Result<Self, WideKeyframeCurveError> {
        let times: Vec<f32> = times.into_iter().collect();
        let values: Vec<T> = values.into_iter().collect();
        let divisor = times.len() * 3;

        if !values.len().is_multiple_of(divisor) {
            return Err(WideKeyframeCurveError::LengthMismatch {
                values_given: values.len(),
                divisor,
            });
        }

        Ok(Self {
            core: ChunkedUnevenCore::new_width_inferred(times, values)?,
        })
    }
}

/// A curve specifying the [`MorphWeights`] for a mesh in animation. The variants are broken
/// down by interpolation mode (with the exception of `Constant`, which never interpolates).
///
/// This type is, itself, a `Curve<Vec<f32>>`; however, in order to avoid allocation, it is
/// recommended to use its implementation of the [`IterableCurve`] trait, which allows iterating
/// directly over information derived from the curve without allocating.
///
/// [`MorphWeights`]: bevy_mesh::morph::MorphWeights
#[derive(Debug, Clone, Reflect)]
#[reflect(Clone)]
pub enum WeightsCurve {
    /// A curve which takes a constant value over its domain. Notably, this is how animations with
    /// only a single keyframe are interpreted.
    Constant(ConstantCurve<Vec<f32>>),

    /// A curve which interpolates weights linearly between keyframes.
    Linear(WideLinearKeyframeCurve<f32>),

    /// A curve which interpolates weights between keyframes in steps.
    Step(WideSteppedKeyframeCurve<f32>),

    /// A curve which interpolates between keyframes by using auxiliary tangent data to join
    /// adjacent keyframes with a cubic Hermite spline, which is then sampled.
    CubicSpline(WideCubicKeyframeCurve<f32>),
}

//---------//
// HELPERS //
//---------//

/// Helper function for cubic spline interpolation.
fn cubic_spline_interpolation<T>(
    value_start: T,
    tangent_out_start: T,
    tangent_in_end: T,
    value_end: T,
    lerp: f32,
    step_duration: f32,
) -> T
where
    T: VectorSpace<Scalar = f32>,
{
    let coeffs = (vec4(2.0, 1.0, -2.0, 1.0) * lerp + vec4(-3.0, -2.0, 3.0, -1.0)) * lerp;
    value_start * (coeffs.x * lerp + 1.0)
        + tangent_out_start * step_duration * lerp * (coeffs.y + 1.0)
        + value_end * lerp * coeffs.z
        + tangent_in_end * step_duration * lerp * coeffs.w
}

fn cubic_spline_interpolate_slices<'a, T: VectorSpace<Scalar = f32>>(
    width: usize,
    first: &'a [T],
    second: &'a [T],
    s: f32,
    step_between: f32,
) -> impl Iterator<Item = T> + 'a {
    (0..width).map(move |idx| {
        cubic_spline_interpolation(
            first[idx + width],
            first[idx + (width * 2)],
            second[idx + width],
            second[idx],
            s,
            step_between,
        )
    })
}