alter_mesh/alter_mesh.rs
1//! Shows how to modify mesh assets after spawning.
2
3use bevy::{
4 asset::RenderAssetUsages, gltf::GltfLoaderSettings,
5 input::common_conditions::input_just_pressed, mesh::VertexAttributeValues, prelude::*,
6};
7
8fn main() {
9 App::new()
10 .add_plugins(DefaultPlugins)
11 .add_systems(Startup, (setup, spawn_text))
12 .add_systems(
13 Update,
14 alter_handle.run_if(input_just_pressed(KeyCode::Space)),
15 )
16 .add_systems(
17 Update,
18 alter_mesh.run_if(input_just_pressed(KeyCode::Enter)),
19 )
20 .run();
21}
22
23#[derive(Component, Debug)]
24enum Shape {
25 Cube,
26 Sphere,
27}
28
29impl Shape {
30 fn get_model_path(&self) -> String {
31 match self {
32 Shape::Cube => "models/cube/cube.gltf".into(),
33 Shape::Sphere => "models/sphere/sphere.gltf".into(),
34 }
35 }
36
37 fn set_next_variant(&mut self) {
38 *self = match self {
39 Shape::Cube => Shape::Sphere,
40 Shape::Sphere => Shape::Cube,
41 }
42 }
43}
44
45#[derive(Component, Debug)]
46struct Left;
47
48fn setup(
49 mut commands: Commands,
50 asset_server: Res<AssetServer>,
51 mut materials: ResMut<Assets<StandardMaterial>>,
52) {
53 let left_shape = Shape::Cube;
54 let right_shape = Shape::Cube;
55
56 // In normal use, you can call `asset_server.load`, however see below for an explanation of
57 // `RenderAssetUsages`.
58 let left_shape_model = asset_server.load_with_settings(
59 GltfAssetLabel::Primitive {
60 mesh: 0,
61 // This field stores an index to this primitive in its parent mesh. In this case, we
62 // want the first one. You might also have seen the syntax:
63 //
64 // models/cube/cube.gltf#Scene0
65 //
66 // which accomplishes the same thing.
67 primitive: 0,
68 }
69 .from_asset(left_shape.get_model_path()),
70 // `RenderAssetUsages::all()` is already the default, so the line below could be omitted.
71 // It's helpful to know it exists, however.
72 //
73 // `RenderAssetUsages` tell Bevy whether to keep the data around:
74 // - for the GPU (`RenderAssetUsages::RENDER_WORLD`),
75 // - for the CPU (`RenderAssetUsages::MAIN_WORLD`),
76 // - or both.
77 // `RENDER_WORLD` is necessary to render the mesh, `MAIN_WORLD` is necessary to inspect
78 // and modify the mesh (via `ResMut<Assets<Mesh>>`).
79 //
80 // Since most games will not need to modify meshes at runtime, many developers opt to pass
81 // only `RENDER_WORLD`. This is more memory efficient, as we don't need to keep the mesh in
82 // RAM. For this example however, this would not work, as we need to inspect and modify the
83 // mesh at runtime.
84 |settings: &mut GltfLoaderSettings| settings.load_meshes = RenderAssetUsages::all(),
85 );
86
87 // Here, we rely on the default loader settings to achieve a similar result to the above.
88 let right_shape_model = asset_server.load(
89 GltfAssetLabel::Primitive {
90 mesh: 0,
91 primitive: 0,
92 }
93 .from_asset(right_shape.get_model_path()),
94 );
95
96 // Add a material asset directly to the materials storage
97 let material_handle = materials.add(StandardMaterial {
98 base_color: Color::srgb(0.6, 0.8, 0.6),
99 ..default()
100 });
101
102 commands.spawn((
103 Left,
104 Name::new("Left Shape"),
105 Mesh3d(left_shape_model),
106 MeshMaterial3d(material_handle.clone()),
107 Transform::from_xyz(-3.0, 0.0, 0.0),
108 left_shape,
109 ));
110
111 commands.spawn((
112 Name::new("Right Shape"),
113 Mesh3d(right_shape_model),
114 MeshMaterial3d(material_handle),
115 Transform::from_xyz(3.0, 0.0, 0.0),
116 right_shape,
117 ));
118
119 commands.spawn((
120 Name::new("Point Light"),
121 PointLight::default(),
122 Transform::from_xyz(4.0, 5.0, 4.0),
123 ));
124
125 commands.spawn((
126 Name::new("Camera"),
127 Camera3d::default(),
128 Transform::from_xyz(0.0, 3.0, 20.0).looking_at(Vec3::ZERO, Vec3::Y),
129 ));
130}
131
132fn spawn_text(mut commands: Commands) {
133 commands.spawn((
134 Name::new("Instructions"),
135 Text::new(
136 "Space: swap meshes by mutating a Handle<Mesh>\n\
137 Return: mutate the mesh itself, changing all copies of it",
138 ),
139 Node {
140 position_type: PositionType::Absolute,
141 top: px(12),
142 left: px(12),
143 ..default()
144 },
145 ));
146}
147
148fn alter_handle(
149 asset_server: Res<AssetServer>,
150 right_shape: Single<(&mut Mesh3d, &mut Shape), Without<Left>>,
151) {
152 // Mesh handles, like other parts of the ECS, can be queried as mutable and modified at
153 // runtime. We only spawned one shape without the `Left` marker component.
154 let (mut mesh, mut shape) = right_shape.into_inner();
155
156 // Switch to a new Shape variant
157 shape.set_next_variant();
158
159 // Modify the handle associated with the Shape on the right side. Note that we will only
160 // have to load the same path from storage media once: repeated attempts will re-use the
161 // asset.
162 mesh.0 = asset_server.load(
163 GltfAssetLabel::Primitive {
164 mesh: 0,
165 primitive: 0,
166 }
167 .from_asset(shape.get_model_path()),
168 );
169}
170
171fn alter_mesh(
172 mut is_mesh_scaled: Local<bool>,
173 left_shape: Single<&Mesh3d, With<Left>>,
174 mut meshes: ResMut<Assets<Mesh>>,
175) {
176 // Obtain a mutable reference to the Mesh asset.
177 let Some(mesh) = meshes.get_mut(*left_shape) else {
178 return;
179 };
180
181 // Now we can directly manipulate vertices on the mesh. Here, we're just scaling in and out
182 // for demonstration purposes. This will affect all entities currently using the asset.
183 //
184 // To do this, we need to grab the stored attributes of each vertex. `Float32x3` just describes
185 // the format in which the attributes will be read: each position consists of an array of three
186 // f32 corresponding to x, y, and z.
187 //
188 // `ATTRIBUTE_POSITION` is a constant indicating that we want to know where the vertex is
189 // located in space (as opposed to which way its normal is facing, vertex color, or other
190 // details).
191 if let Some(VertexAttributeValues::Float32x3(positions)) =
192 mesh.attribute_mut(Mesh::ATTRIBUTE_POSITION)
193 {
194 // Check a Local value (which only this system can make use of) to determine if we're
195 // currently scaled up or not.
196 let scale_factor = if *is_mesh_scaled { 0.5 } else { 2.0 };
197
198 for position in positions.iter_mut() {
199 // Apply the scale factor to each of x, y, and z.
200 position[0] *= scale_factor;
201 position[1] *= scale_factor;
202 position[2] *= scale_factor;
203 }
204
205 // Flip the local value to reverse the behavior next time the key is pressed.
206 *is_mesh_scaled = !*is_mesh_scaled;
207 }
208}