bep-sqlite 0.1.0

SQLite-based vector store implementation for the bep framework
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
use bep::embeddings::{Embedding, EmbeddingModel};
use bep::vector_store::{VectorStoreError, VectorStoreIndex};
use bep::OneOrMany;
use serde::Deserialize;
use std::marker::PhantomData;
use tokio_rusqlite::Connection;
use tracing::{debug, info};
use zerocopy::IntoBytes;

#[derive(Debug)]
pub enum SqliteError {
    DatabaseError(Box<dyn std::error::Error + Send + Sync>),
    SerializationError(Box<dyn std::error::Error + Send + Sync>),
    InvalidColumnType(String),
}

pub trait ColumnValue: Send + Sync {
    fn to_sql_string(&self) -> String;
    fn column_type(&self) -> &'static str;
}

pub struct Column {
    name: &'static str,
    col_type: &'static str,
    indexed: bool,
}

impl Column {
    pub fn new(name: &'static str, col_type: &'static str) -> Self {
        Self {
            name,
            col_type,
            indexed: false,
        }
    }

    pub fn indexed(mut self) -> Self {
        self.indexed = true;
        self
    }
}

/// Example of a document type that can be used with SqliteVectorStore
/// ```rust
/// use bep::Embed;
/// use serde::Deserialize;
/// use bep_sqlite::{Column, ColumnValue, SqliteVectorStoreTable};
///
/// #[derive(Embed, Clone, Debug, Deserialize)]
/// struct Document {
///     id: String,
///     #[embed]
///     content: String,
/// }
///
/// impl SqliteVectorStoreTable for Document {
///     fn name() -> &'static str {
///         "documents"
///     }
///
///     fn schema() -> Vec<Column> {
///         vec![
///             Column::new("id", "TEXT PRIMARY KEY"),
///             Column::new("content", "TEXT"),
///         ]
///     }
///
///     fn id(&self) -> String {
///         self.id.clone()
///     }
///
///     fn column_values(&self) -> Vec<(&'static str, Box<dyn ColumnValue>)> {
///         vec![
///             ("id", Box::new(self.id.clone())),
///             ("content", Box::new(self.content.clone())),
///         ]
///     }
/// }
/// ```
pub trait SqliteVectorStoreTable: Send + Sync + Clone {
    fn name() -> &'static str;
    fn schema() -> Vec<Column>;
    fn id(&self) -> String;
    fn column_values(&self) -> Vec<(&'static str, Box<dyn ColumnValue>)>;
}

#[derive(Clone)]
pub struct SqliteVectorStore<E: EmbeddingModel + 'static, T: SqliteVectorStoreTable + 'static> {
    conn: Connection,
    _phantom: PhantomData<(E, T)>,
}

impl<E: EmbeddingModel + 'static, T: SqliteVectorStoreTable + 'static> SqliteVectorStore<E, T> {
    pub async fn new(conn: Connection, embedding_model: &E) -> Result<Self, VectorStoreError> {
        let dims = embedding_model.ndims();
        let table_name = T::name();
        let schema = T::schema();

        // Build the table schema
        let mut create_table = format!("CREATE TABLE IF NOT EXISTS {} (", table_name);

        // Add columns
        let mut first = true;
        for column in &schema {
            if !first {
                create_table.push(',');
            }
            create_table.push_str(&format!("\n    {} {}", column.name, column.col_type));
            first = false;
        }

        create_table.push_str("\n)");

        // Build index creation statements
        let mut create_indexes = vec![format!(
            "CREATE INDEX IF NOT EXISTS idx_{}_id ON {}(id)",
            table_name, table_name
        )];

        // Add indexes for marked columns
        for column in schema {
            if column.indexed {
                create_indexes.push(format!(
                    "CREATE INDEX IF NOT EXISTS idx_{}_{} ON {}({})",
                    table_name, column.name, table_name, column.name
                ));
            }
        }

        conn.call(move |conn| {
            conn.execute_batch("BEGIN")?;

            // Create document table
            conn.execute_batch(&create_table)?;

            // Create indexes
            for index_stmt in create_indexes {
                conn.execute_batch(&index_stmt)?;
            }

            // Create embeddings table
            conn.execute_batch(&format!(
                "CREATE VIRTUAL TABLE IF NOT EXISTS {}_embeddings USING vec0(embedding float[{}])",
                table_name, dims
            ))?;

            conn.execute_batch("COMMIT")?;
            Ok(())
        })
        .await
        .map_err(|e| VectorStoreError::DatastoreError(Box::new(e)))?;

        Ok(Self {
            conn,
            _phantom: PhantomData,
        })
    }

    pub fn index(self, model: E) -> SqliteVectorIndex<E, T> {
        SqliteVectorIndex::new(model, self)
    }

    pub fn add_rows_with_txn(
        &self,
        txn: &rusqlite::Transaction<'_>,
        documents: Vec<(T, OneOrMany<Embedding>)>,
    ) -> Result<i64, tokio_rusqlite::Error> {
        info!("Adding {} documents to store", documents.len());
        let table_name = T::name();
        let mut last_id = 0;

        for (doc, embeddings) in &documents {
            debug!("Storing document with id {}", doc.id());

            let values = doc.column_values();
            let columns = values.iter().map(|(col, _)| *col).collect::<Vec<_>>();

            let placeholders = (1..=values.len())
                .map(|i| format!("?{}", i))
                .collect::<Vec<_>>();

            let insert_sql = format!(
                "INSERT OR REPLACE INTO {} ({}) VALUES ({})",
                table_name,
                columns.join(", "),
                placeholders.join(", ")
            );

            txn.execute(
                &insert_sql,
                rusqlite::params_from_iter(values.iter().map(|(_, val)| val.to_sql_string())),
            )?;
            last_id = txn.last_insert_rowid();

            let embeddings_sql = format!(
                "INSERT INTO {}_embeddings (rowid, embedding) VALUES (?1, ?2)",
                table_name
            );

            let mut stmt = txn.prepare(&embeddings_sql)?;
            for (i, embedding) in embeddings.iter().enumerate() {
                let vec = serialize_embedding(embedding);
                debug!(
                    "Storing embedding {} of {} (size: {} bytes)",
                    i + 1,
                    embeddings.len(),
                    vec.len() * 4
                );
                let blob = rusqlite::types::Value::Blob(vec.as_bytes().to_vec());
                stmt.execute(rusqlite::params![last_id, blob])?;
            }
        }

        Ok(last_id)
    }

    pub async fn add_rows(
        &self,
        documents: Vec<(T, OneOrMany<Embedding>)>,
    ) -> Result<i64, VectorStoreError> {
        let documents = documents.clone();
        let this = self.clone();

        self.conn
            .call(move |conn| {
                let tx = conn.transaction().map_err(tokio_rusqlite::Error::from)?;
                let result = this.add_rows_with_txn(&tx, documents)?;
                tx.commit().map_err(tokio_rusqlite::Error::from)?;
                Ok(result)
            })
            .await
            .map_err(|e| VectorStoreError::DatastoreError(Box::new(e)))
    }
}

/// SQLite vector store implementation for Bep.
///
/// This crate provides a SQLite-based vector store implementation that can be used with Bep.
/// It uses the `sqlite-vec` extension to enable vector similarity search capabilities.
///
/// # Example
/// ```rust
/// use bep::{
///     embeddings::EmbeddingsBuilder,
///     providers::openai::{Client, TEXT_EMBEDDING_ADA_002},
///     vector_store::VectorStoreIndex,
///     Embed,
/// };
/// use bep_sqlite::{Column, ColumnValue, SqliteVectorStore, SqliteVectorStoreTable};
/// use serde::Deserialize;
/// use tokio_rusqlite::Connection;
///
/// #[derive(Embed, Clone, Debug, Deserialize)]
/// struct Document {
///     id: String,
///     #[embed]
///     content: String,
/// }
///
/// impl SqliteVectorStoreTable for Document {
///     fn name() -> &'static str {
///         "documents"
///     }
///
///     fn schema() -> Vec<Column> {
///         vec![
///             Column::new("id", "TEXT PRIMARY KEY"),
///             Column::new("content", "TEXT"),
///         ]
///     }
///
///     fn id(&self) -> String {
///         self.id.clone()
///     }
///
///     fn column_values(&self) -> Vec<(&'static str, Box<dyn ColumnValue>)> {
///         vec![
///             ("id", Box::new(self.id.clone())),
///             ("content", Box::new(self.content.clone())),
///         ]
///     }
/// }
///
/// let conn = Connection::open("vector_store.db").await?;
/// let openai_client = Client::new("YOUR_API_KEY");
/// let model = openai_client.embedding_model(TEXT_EMBEDDING_ADA_002);
///
/// // Initialize vector store
/// let vector_store = SqliteVectorStore::new(conn, &model).await?;
///
/// // Create documents
/// let documents = vec![
///     Document {
///         id: "doc1".to_string(),
///         content: "Example document 1".to_string(),
///     },
///     Document {
///         id: "doc2".to_string(),
///         content: "Example document 2".to_string(),
///     },
/// ];
///
/// // Generate embeddings
/// let embeddings = EmbeddingsBuilder::new(model.clone())
///     .documents(documents)?
///     .build()
///     .await?;
///
/// // Add to vector store
/// vector_store.add_rows(embeddings).await?;
///
/// // Create index and search
/// let index = vector_store.index(model);
/// let results = index
///     .top_n::<Document>("Example query", 2)
///     .await?;
/// ```
pub struct SqliteVectorIndex<E: EmbeddingModel + 'static, T: SqliteVectorStoreTable + 'static> {
    store: SqliteVectorStore<E, T>,
    embedding_model: E,
}

impl<E: EmbeddingModel + 'static, T: SqliteVectorStoreTable> SqliteVectorIndex<E, T> {
    pub fn new(embedding_model: E, store: SqliteVectorStore<E, T>) -> Self {
        Self {
            store,
            embedding_model,
        }
    }
}

impl<E: EmbeddingModel + std::marker::Sync, T: SqliteVectorStoreTable> VectorStoreIndex
    for SqliteVectorIndex<E, T>
{
    async fn top_n<D: for<'a> Deserialize<'a>>(
        &self,
        query: &str,
        n: usize,
    ) -> Result<Vec<(f64, String, D)>, VectorStoreError> {
        debug!("Finding top {} matches for query", n);
        let embedding = self.embedding_model.embed_text(query).await?;
        let query_vec: Vec<f32> = serialize_embedding(&embedding);
        let table_name = T::name();

        // Get all column names from SqliteVectorStoreTable
        let columns = T::schema();
        let column_names: Vec<&str> = columns.iter().map(|column| column.name).collect();

        let rows = self
            .store
            .conn
            .call(move |conn| {
                // Build SELECT statement with all columns
                let select_cols = column_names.join(", ");
                let mut stmt = conn.prepare(&format!(
                    "SELECT d.{}, e.distance 
                    FROM {}_embeddings e
                    JOIN {} d ON e.rowid = d.rowid
                    WHERE e.embedding MATCH ?1 AND k = ?2
                    ORDER BY e.distance",
                    select_cols, table_name, table_name
                ))?;

                let rows = stmt
                    .query_map(rusqlite::params![query_vec.as_bytes().to_vec(), n], |row| {
                        // Create a map of column names to values
                        let mut map = serde_json::Map::new();
                        for (i, col_name) in column_names.iter().enumerate() {
                            let value: String = row.get(i)?;
                            map.insert(col_name.to_string(), serde_json::Value::String(value));
                        }
                        let distance: f64 = row.get(column_names.len())?;
                        let id: String = row.get(0)?; // Assuming id is always first column

                        Ok((id, serde_json::Value::Object(map), distance))
                    })?
                    .collect::<Result<Vec<_>, _>>()?;
                Ok(rows)
            })
            .await
            .map_err(|e| VectorStoreError::DatastoreError(Box::new(e)))?;

        debug!("Found {} potential matches", rows.len());
        let mut top_n = Vec::new();
        for (id, doc_value, distance) in rows {
            match serde_json::from_value::<D>(doc_value) {
                Ok(doc) => {
                    top_n.push((distance, id, doc));
                }
                Err(e) => {
                    debug!("Failed to deserialize document {}: {}", id, e);
                    continue;
                }
            }
        }

        debug!("Returning {} matches", top_n.len());
        Ok(top_n)
    }

    async fn top_n_ids(
        &self,
        query: &str,
        n: usize,
    ) -> Result<Vec<(f64, String)>, VectorStoreError> {
        debug!("Finding top {} document IDs for query", n);
        let embedding = self.embedding_model.embed_text(query).await?;
        let query_vec = serialize_embedding(&embedding);
        let table_name = T::name();

        let results = self
            .store
            .conn
            .call(move |conn| {
                let mut stmt = conn.prepare(&format!(
                    "SELECT d.id, e.distance 
                     FROM {0}_embeddings e
                     JOIN {0} d ON e.rowid = d.rowid
                     WHERE e.embedding MATCH ?1 AND k = ?2
                     ORDER BY e.distance",
                    table_name
                ))?;

                let results = stmt
                    .query_map(
                        rusqlite::params![
                            query_vec
                                .iter()
                                .flat_map(|x| x.to_le_bytes())
                                .collect::<Vec<u8>>(),
                            n
                        ],
                        |row| Ok((row.get::<_, f64>(1)?, row.get::<_, String>(0)?)),
                    )?
                    .collect::<Result<Vec<_>, _>>()?;
                Ok(results)
            })
            .await
            .map_err(|e| VectorStoreError::DatastoreError(Box::new(e)))?;

        debug!("Found {} matching document IDs", results.len());
        Ok(results)
    }
}

fn serialize_embedding(embedding: &Embedding) -> Vec<f32> {
    embedding.vec.iter().map(|x| *x as f32).collect()
}

impl ColumnValue for String {
    fn to_sql_string(&self) -> String {
        self.clone()
    }

    fn column_type(&self) -> &'static str {
        "TEXT"
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{Column, ColumnValue, SqliteVectorStore, SqliteVectorStoreTable};
    use bep::{
        embeddings::EmbeddingsBuilder,
        providers::openai::{Client, TEXT_EMBEDDING_ADA_002},
        Embed,
    };
    use rusqlite::ffi::sqlite3_auto_extension;
    use sqlite_vec::sqlite3_vec_init;
    use tokio_rusqlite::Connection;

    #[derive(Embed, Clone, Debug, Deserialize)]
    struct TestDocument {
        id: String,
        #[embed]
        content: String,
    }

    impl SqliteVectorStoreTable for TestDocument {
        fn name() -> &'static str {
            "test_documents"
        }

        fn schema() -> Vec<Column> {
            vec![
                Column::new("id", "TEXT PRIMARY KEY"),
                Column::new("content", "TEXT"),
            ]
        }

        fn id(&self) -> String {
            self.id.clone()
        }

        fn column_values(&self) -> Vec<(&'static str, Box<dyn ColumnValue>)> {
            vec![
                ("id", Box::new(self.id.clone())),
                ("content", Box::new(self.content.clone())),
            ]
        }
    }

    #[tokio::test]
    async fn test_vector_search() -> Result<(), anyhow::Error> {
        // Initialize the sqlite-vec extension
        unsafe {
            sqlite3_auto_extension(Some(std::mem::transmute(sqlite3_vec_init as *const ())));
        }

        // Initialize in-memory SQLite connection
        let conn = Connection::open(":memory:").await?;

        // Initialize OpenAI client
        let openai_api_key = std::env::var("OPENAI_API_KEY").expect("OPENAI_API_KEY not set");
        let openai_client = Client::new(&openai_api_key);
        let model = openai_client.embedding_model(TEXT_EMBEDDING_ADA_002);

        let documents = vec![
            TestDocument {
                id: "doc0".to_string(),
                content: "The quick brown fox jumps over the lazy dog".to_string(),
            },
            TestDocument {
                id: "doc1".to_string(),
                content: "The lazy dog sleeps while the quick brown fox runs".to_string(),
            },
        ];

        let embeddings = EmbeddingsBuilder::new(model.clone())
            .documents(documents)?
            .build()
            .await?;

        // Initialize SQLite vector store
        let vector_store = SqliteVectorStore::new(conn, &model).await?;

        // Add embeddings to vector store
        vector_store.add_rows(embeddings).await?;

        // Create vector index
        let index = vector_store.index(model);

        // Query the index
        let results = index
            .top_n::<TestDocument>("The quick brown fox jumps over the lazy dog", 1)
            .await?;
        assert_eq!(results.len(), 1);

        let id_results = index
            .top_n_ids("The quick brown fox jumps over the lazy dog", 1)
            .await?;
        assert_eq!(id_results.len(), 1);

        Ok(())
    }
}