1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
//! Parsing BER encoded values.
//!
//! This is an internal module. Its public types are re-exported by the
//! parent.

#![allow(unused_imports)]
#![allow(dead_code)]

use std::fmt;
use std::convert::Infallible;
use bytes::Bytes;
use smallvec::SmallVec;
use crate::captured::Captured;
use crate::int::{Integer, Unsigned};
use crate::length::Length;
use crate::mode::Mode;
use crate::tag::Tag;
use super::error::{ContentError, DecodeError};
use super::source::{
    CaptureSource, IntoSource, LimitedSource, Pos, SliceSource, Source,
};


//------------ Content -------------------------------------------------------

/// The content octets of a BER-encoded value.
///
/// A value is either primitive, containing actual octets of an actual value,
/// or constructed, in which case its content contains additional BER encoded
/// values. This enum is useful for cases where a certain type may be encoded
/// as either a primitive value or a complex constructed value.
///
/// Note that this type represents the content octets only, i.e., it does not
/// contain the tag of the value.
pub enum Content<'a, S: 'a> {
    /// The value is a primitive value.
    Primitive(Primitive<'a, S>),

    /// The value is a constructed value.
    Constructed(Constructed<'a, S>)
}

impl<'a, S: Source + 'a> Content<'a, S> {
    /// Checks that the content has been parsed completely.
    ///
    /// Returns a malformed error if not.
    fn exhausted(self) -> Result<(), DecodeError<S::Error>> {
        match self {
            Content::Primitive(inner) => inner.exhausted(),
            Content::Constructed(mut inner) => inner.exhausted()
        }
    }

    /// Returns the encoding mode used by the value.
    pub fn mode(&self) -> Mode {
        match *self {
            Content::Primitive(ref inner) => inner.mode(),
            Content::Constructed(ref inner) => inner.mode()
        }
    }

    /// Returns whether this value is a primitive value.
    pub fn is_primitive(&self) -> bool {
        match *self {
            Content::Primitive(_) => true,
            Content::Constructed(_) => false,
        }
    }

    /// Returns whether this value is a constructed value.
    pub fn is_constructed(&self) -> bool {
        match *self {
            Content::Primitive(_) => false,
            Content::Constructed(_) => true,
        }
    }

    /// Converts a reference into into one to a primitive value or errors out.
    pub fn as_primitive(
        &mut self
    ) -> Result<&mut Primitive<'a, S>, DecodeError<S::Error>> {
        match *self {
            Content::Primitive(ref mut inner) => Ok(inner),
            Content::Constructed(ref inner) => {
                Err(inner.content_err("expected primitive value"))
            }
        }
    }

    /// Converts a reference into on to a constructed value or errors out.
    pub fn as_constructed(
        &mut self
    ) -> Result<&mut Constructed<'a, S>, DecodeError<S::Error>> {
        match *self {
            Content::Primitive(ref inner) => {
                Err(inner.content_err("expected constructed value"))
            }
            Content::Constructed(ref mut inner) => Ok(inner),
        }
    }

    /// Produces a content error at the current source position.
    pub fn content_err(
        &self, err: impl Into<ContentError>,
    ) -> DecodeError<S::Error> {
        match *self {
            Content::Primitive(ref inner) => inner.content_err(err),
            Content::Constructed(ref inner) => inner.content_err(err),
        }
    }
}

#[allow(clippy::wrong_self_convention)]
impl<'a, S: Source + 'a> Content<'a, S> {
    /// Converts content into a `u8`.
    ///
    /// If the content is not primitive or does not contain a single BER
    /// encoded INTEGER value between 0 and 256, returns a malformed error.
    pub fn to_u8(&mut self) -> Result<u8, DecodeError<S::Error>> {
        if let Content::Primitive(ref mut prim) = *self {
            prim.to_u8()
        }
        else {
            Err(self.content_err("expected integer (0..255)"))
        }
    }

    /// Skips over the content if it contains an INTEGER of value `expected`.
    ///
    /// The content needs to be primitive and contain a validly encoded
    /// integer of value `expected` or else a malformed error will be
    /// returned.
    pub fn skip_u8_if(
        &mut self, expected: u8,
    ) -> Result<(), DecodeError<S::Error>> {
        let res = self.to_u8()?;
        if res == expected {
            Ok(())
        }
        else {
            Err(self.content_err(ExpectedIntValue(expected)))
        }
    }

    /// Converts content into a `u16`.
    ///
    /// If the content is not primitive or does not contain a single BER
    /// encoded INTEGER value between 0 and 2^16-1, returns a malformed error.
    pub fn to_u16(&mut self) -> Result<u16, DecodeError<S::Error>> {
        if let Content::Primitive(ref mut prim) = *self {
            prim.to_u16()
        }
        else {
            Err(self.content_err("expected integer (0..65535)"))
        }
    }

    /// Converts content into a `u32`.
    ///
    /// If the content is not primitive or does not contain a single BER
    /// encoded INTEGER value between 0 and 2^32-1, returns a malformed error.
    pub fn to_u32(&mut self) -> Result<u32, DecodeError<S::Error>> {
        if let Content::Primitive(ref mut prim) = *self {
            prim.to_u32()
        }
        else {
            Err(self.content_err("expected integer (0..4294967295)"))
        }
    }

    /// Converts content into a `u64`.
    ///
    /// If the content is not primitive or does not contain a single BER
    /// encoded INTEGER value between 0 and 2^64-1, returns a malformed error.
    pub fn to_u64(&mut self) -> Result<u64, DecodeError<S::Error>> {
        if let Content::Primitive(ref mut prim) = *self {
            prim.to_u64()
        }
        else {
            Err(self.content_err("expected integer (0..2**64-1)"))
        }
    }

    /// Converts the content into a NULL value.
    ///
    /// If the content isn’t primitive and contains a single BER encoded
    /// NULL value (i.e., nothing), returns a malformed error.
    pub fn to_null(&mut self) -> Result<(), DecodeError<S::Error>> {
        if let Content::Primitive(ref mut prim) = *self {
            prim.to_null()
        }
        else {
            Err(self.content_err("expected NULL"))
        }
    }
}


//------------ Primitive -----------------------------------------------------

/// The content octets of a primitive value.
///
/// You will receive a reference to a value of this type through a closure,
/// possibly wrapped in a `Content` value. Your task will be to read out all
/// the octets of the value before returning from the closure or produce an
/// error if the value isn’t correctly encoded. If you read less octets than
/// are available, whoever called the closure will produce an error after
/// you returned. Thus, you can read as many octets as you expect and not
/// bother to check whether that was all available octets.
///
/// The most basic way to do this is through the primitive’s implementation
/// of the `Source` trait. Thus, you can gain access to some or all of the
/// octets and mark them read by advancing over them. You can safely attempt
/// to read more octets than available as that will reliably result in a 
/// malformed error.
///
/// A number of methods are available to deal with the encodings defined for
/// various types. These are prefixed by `to_` to indicate that they are
/// intended to convert the content to a certain type. They all read exactly
/// one encoded value.
///
/// The value provides access to the decoding mode via the `mode` method.
/// All methodes that decode data will honour the decoding mode and enforce
/// that data is encoded according to the mode.
pub struct Primitive<'a, S: 'a> {
    /// The underlying source limited to the length of the value.
    source: &'a mut LimitedSource<S>,

    /// The decoding mode to operate in.
    mode: Mode,

    /// The start position of the value in the source.
    start: Pos,
}

/// # Value Management
///
impl<'a, S: 'a> Primitive<'a, S> {
    /// Creates a new primitive from the given source and mode.
    fn new(source: &'a mut LimitedSource<S>, mode: Mode) -> Self
    where S: Source {
        Primitive { start: source.pos(), source, mode }
    }

    /// Returns the current decoding mode.
    ///
    /// The higher-level `to_` methods will use this mode to enforce that
    /// data is encoded correctly.
    pub fn mode(&self) -> Mode {
        self.mode
    }

    /// Sets the current decoding mode.
    pub fn set_mode(&mut self, mode: Mode) {
        self.mode = mode
    }
}

impl<'a, S: Source + 'a> Primitive<'a, S> {
    /// Produces a content error at the current source position.
    pub fn content_err(
        &self, err: impl Into<ContentError>,
    ) -> DecodeError<S::Error> {
        DecodeError::content(err, self.start)
    }
}


/// # High-level Decoding
///
#[allow(clippy::wrong_self_convention)]
impl<'a, S: Source + 'a> Primitive<'a, S> {
    /// Parses the primitive value as a BOOLEAN value.
    pub fn to_bool(&mut self) -> Result<bool, DecodeError<S::Error>> {
        let res = self.take_u8()?;
        if self.mode != Mode::Ber {
            match res {
                0 => Ok(false),
                0xFF => Ok(true),
                _ => {
                    Err(self.content_err("invalid boolean"))
                }
            }
        }
        else {
            Ok(res != 0)
        }
    }

    /// Parses the primitive value as an INTEGER limited to a `i8`.
    pub fn to_i8(&mut self) -> Result<i8, DecodeError<S::Error>> {
        Integer::i8_from_primitive(self)
    }

    /// Parses the primitive value as an INTEGER limited to a `i8`.
    pub fn to_i16(&mut self) -> Result<i16, DecodeError<S::Error>> {
        Integer::i16_from_primitive(self)
    }

    /// Parses the primitive value as an INTEGER limited to a `i8`.
    pub fn to_i32(&mut self) -> Result<i32, DecodeError<S::Error>> {
        Integer::i32_from_primitive(self)
    }

    /// Parses the primitive value as an INTEGER limited to a `i8`.
    pub fn to_i64(&mut self) -> Result<i64, DecodeError<S::Error>> {
        Integer::i64_from_primitive(self)
    }

    /// Parses the primitive value as an INTEGER limited to a `i8`.
    pub fn to_i128(&mut self) -> Result<i128, DecodeError<S::Error>> {
        Integer::i128_from_primitive(self)
    }

    /// Parses the primitive value as an INTEGER limited to a `u8`.
    pub fn to_u8(&mut self) -> Result<u8, DecodeError<S::Error>> {
        Unsigned::u8_from_primitive(self)
    }

    /// Parses the primitive value as an INTEGER limited to a `u16`.
    pub fn to_u16(&mut self) -> Result<u16, DecodeError<S::Error>> {
        Unsigned::u16_from_primitive(self)
    }

    /// Parses the primitive value as an INTEGER limited to a `u32`.
    pub fn to_u32(&mut self) -> Result<u32, DecodeError<S::Error>> {
        Unsigned::u32_from_primitive(self)
    }

    /// Parses the primitive value as a INTEGER value limited to a `u64`.
    pub fn to_u64(&mut self) -> Result<u64, DecodeError<S::Error>> {
        Unsigned::u64_from_primitive(self)
    }

    /// Parses the primitive value as a INTEGER value limited to a `u128`.
    pub fn to_u128(&mut self) -> Result<u64, DecodeError<S::Error>> {
        Unsigned::u64_from_primitive(self)
    }

    /// Converts the content octets to a NULL value.
    ///
    /// Since such a value is empty, this doesn’t really do anything.
    pub fn to_null(&mut self) -> Result<(), DecodeError<S::Error>> {
        if self.remaining() > 0 {
            Err(self.content_err("invalid NULL value"))
        }
        else {
            Ok(())
        }
    }
}

/// # Low-level Access
///
/// For basic low-level access, `Primitive` implements the `Source` trait.
/// Because the length of the content is guaranteed to be known, it can
/// provide a few additional methods. Note that these may still fail because
/// the underlying source doesn’t guarantee that as many octets are actually
/// available.
impl<'a, S: Source + 'a> Primitive<'a, S> {
    /// Returns the number of remaining octets.
    ///
    /// The returned value reflects what is left of the expected length of
    /// content and therefore decreases when the primitive is advanced.
    pub fn remaining(&self) -> usize {
        self.source.limit().unwrap()
    }

    /// Skips the rest of the content.
    ///
    /// Returns a malformed error if the source ends before the expected
    /// length of content.
    pub fn skip_all(&mut self) -> Result<(), DecodeError<S::Error>> {
        self.source.skip_all()
    }

    /// Returns the remainder of the content as a `Bytes` value.
    pub fn take_all(&mut self) -> Result<Bytes, DecodeError<S::Error>> {
        self.source.take_all()
    }

    /// Returns a bytes slice of the remainder of the content.
    pub fn slice_all(&mut self) -> Result<&[u8], DecodeError<S::Error>> {
        let remaining = self.remaining();
        if self.source.request(remaining)? < remaining {
            Err(self.source.content_err("unexpected end of data"))
        }
        else {
            Ok(&self.source.slice()[..remaining])
        }
    }

    /// Checkes whether all content has been advanced over.
    fn exhausted(self) -> Result<(), DecodeError<S::Error>> {
        self.source.exhausted()
    }
}


/// # Support for Testing
///
impl Primitive<'static, ()> {
    /// Decode a bytes slice via a closure.
    ///
    /// This method can be used in testing code for decoding primitive
    /// values by providing a bytes slice with the content. For instance,
    /// decoding the `to_bool` method could be tested like this:
    ///
    /// ```
    /// use bcder::Mode;
    /// use bcder::decode::Primitive;
    ///
    /// assert_eq!(
    ///     Primitive::decode_slice(
    ///         b"\x00".as_ref(), Mode::Der,
    ///         |prim| prim.to_bool()
    ///     ).unwrap(),
    ///     false
    /// )
    /// ```
    pub fn decode_slice<F, T>(
        data: &[u8],
        mode: Mode,
        op: F
    ) -> Result<T, DecodeError<Infallible>>
    where
        F: FnOnce(
            &mut Primitive<SliceSource>
        ) -> Result<T, DecodeError<Infallible>>
    {
        let mut lim = LimitedSource::new(data.into_source());
        lim.set_limit(Some(data.len()));
        let mut prim = Primitive::new(&mut lim, mode);
        let res = op(&mut prim)?;
        prim.exhausted()?;
        Ok(res)
    }
}


//--- Source

impl<'a, S: Source + 'a> Source for Primitive<'a, S> {
    type Error = S::Error;

    fn pos(&self) -> Pos {
        self.source.pos()
    }

    fn request(&mut self, len: usize) -> Result<usize, Self::Error> {
        self.source.request(len)
    }

    fn slice(&self) -> &[u8] {
        self.source.slice()
    }

    fn bytes(&self, start: usize, end: usize) -> Bytes {
        self.source.bytes(start, end)
    }

    fn advance(&mut self, len: usize) {
        self.source.advance(len)
    }
}


//------------ Constructed ---------------------------------------------------

/// The content octets of a constructed value.
///
/// You will only ever receive a mutable reference to a value of this type
/// as an argument to a closure provided to some function. The closure will
/// have to process all content of the constructed value.
///
/// Since constructed values consist of a sequence of values, the methods
/// allow you to process these values one by one. The most basic of these
/// are [`take_value`] and [`take_opt_value`] which process exactly one
/// value or up to one value. A number of convenience functions exists on
/// top of them for commonly encountered types and cases.
///
/// Because the caller of your closure checks whether all content has been
/// advanced over and raising an error of not, you only need to read as many
/// values as you expected to be present and can simply return when you think
/// you are done.
///
/// [`take_value`]: #method.take_value
/// [`take_opt_value`]: #method.take_opt_value
#[derive(Debug)]
pub struct Constructed<'a, S: 'a> {
    /// The underlying source.
    source: &'a mut LimitedSource<S>,

    /// The state we are in so we can determine the end of the content.
    state: State,

    /// The encoding mode to use.
    mode: Mode,

    /// The start position of the value in the source.
    start: Pos,
}

/// # General Management
///
impl<'a, S: Source + 'a> Constructed<'a, S> {
    /// Creates a new source from the given components.
    fn new(
        source: &'a mut LimitedSource<S>,
        state: State,
        mode: Mode
    ) -> Self {
        Constructed { start: source.pos(), source, state, mode }
    }

    /// Decode a source as constructed content.
    ///
    /// The function will start decoding of `source` in the given mode. It
    /// will pass a constructed content value to the closure `op` which
    /// has to process all the content and return a result or error.
    ///
    /// This function is identical to calling [`Mode::decode`].
    ///
    /// [`Mode::decode`]: ../enum.Mode.html#method.decode
    pub fn decode<I, F, T>(
        source: I, mode: Mode, op: F,
    ) -> Result<T, DecodeError<S::Error>>
    where
        I: IntoSource<Source = S>,
        F: FnOnce(&mut Constructed<S>) -> Result<T, DecodeError<S::Error>>
    {
        let mut source = LimitedSource::new(source.into_source());
        let mut cons = Constructed::new(&mut source, State::Unbounded, mode);
        let res = op(&mut cons)?;
        cons.exhausted()?;
        Ok(res)
    }

    /// Returns the encoding mode used by the value.
    pub fn mode(&self) -> Mode {
        self.mode
    }

    /// Sets the encoding mode to be used for the value.
    pub fn set_mode(&mut self, mode: Mode) {
        self.mode = mode
    }
}

impl<'a, S: Source + 'a> Constructed<'a, S> {
    /// Produces a content error at start of the value.
    pub fn content_err(
        &self, err: impl Into<ContentError>,
    ) -> DecodeError<S::Error> {
        DecodeError::content(err, self.start)
    }
}

/// # Fundamental Reading
///
impl<'a, S: Source + 'a> Constructed<'a, S> {
    /// Checks whether all content has been advanced over.
    ///
    /// For a value of definite length, this is the case when the limit of the
    /// source has been reached. For indefinite values, we need to have either
    /// already read or can now read the end-of-value marker.
    fn exhausted(&mut self) -> Result<(), DecodeError<S::Error>> {
        match self.state {
            State::Done => Ok(()),
            State::Definite => {
                self.source.exhausted()
            }
            State::Indefinite => {
                let (tag, constructed) = Tag::take_from(self.source)?;
                if tag != Tag::END_OF_VALUE || constructed
                    || !Length::take_from(self.source, self.mode)?.is_zero()
                {
                    Err(self.content_err("unexpected trailing values"))
                }
                else {
                    Ok(())
                }
            }
            State::Unbounded => Ok(())
        }
    }

    /// Returns whether we have already reached the end.
    ///
    /// For indefinite values, we may be at the end right now but don’t
    /// know it yet.
    fn is_exhausted(&self) -> bool {
        match self.state {
            State::Definite => {
                self.source.limit().unwrap() == 0
            }
            State::Indefinite => false,
            State::Done => true,
            State::Unbounded => false,
        }
    }

    /// Processes the next value.
    ///
    /// If `expected` is not `None`, the method will only process a value
    /// with the given tag and return `Ok(None)` if there isn’t another value
    /// or if the next value has a different tag.
    ///
    /// If `expected` is `None`, the method will process a value with any
    /// tag and only return `Ok(None)` if it reached the end of the value.
    ///
    /// The closure `op` receives both the tag and content for the next
    /// value. It must process the value, advancing the source to its end
    /// or return an error.
    fn process_next_value<F, T>(
        &mut self,
        expected: Option<Tag>,
        op: F
    ) -> Result<Option<T>, DecodeError<S::Error>>
    where
        F: FnOnce(Tag, &mut Content<S>) -> Result<T, DecodeError<S::Error>>
    {
        if self.is_exhausted() {
            return Ok(None)
        }
        let (tag, constructed) = if let Some(expected) = expected {
            (
                expected,
                match expected.take_from_if(self.source)? {
                    Some(compressed) => compressed,
                    None => return Ok(None)
                }
            )
        }
        else {
            Tag::take_from(self.source)?
        };
        let length = Length::take_from(self.source, self.mode)?;

        if tag == Tag::END_OF_VALUE {
            if let State::Indefinite = self.state {
                if constructed {
                    return Err(self.source.content_err(
                        "constructed end of value"
                    ))
                }
                if !length.is_zero() {
                    return Err(self.source.content_err(
                        "non-empty end of value"
                    ))
                }
                self.state = State::Done;
                return Ok(None)
            }
            else {
                return Err(self.source.content_err(
                    "unexpected end of value"
                ))
            }
        }

        match length {
            Length::Definite(len) => {
                let old_limit = self.source.limit_further(Some(len));
                let res = {
                    let mut content = if constructed {
                        // Definite length constructed values are not allowed
                        // in CER.
                        if self.mode == Mode::Cer {
                            return Err(self.source.content_err(
                                "definite length constructed in CER mode"
                            ))
                        }
                        Content::Constructed(
                            Constructed::new(
                                self.source, State::Definite, self.mode
                            )
                        )
                    }
                    else {
                        Content::Primitive(
                            Primitive::new(self.source, self.mode)
                        )
                    };
                    let res = op(tag, &mut content)?;
                    content.exhausted()?;
                    res
                };
                self.source.set_limit(old_limit.map(|x| x - len));
                Ok(Some(res))
            }
            Length::Indefinite => {
                if !constructed || self.mode == Mode::Der {
                    return Err(self.source.content_err(
                        "indefinite length constructed in DER mode"
                    ))
                }
                let mut content = Content::Constructed(
                    Constructed::new(
                        self.source, State::Indefinite, self.mode
                    )
                );
                let res = op(tag, &mut content)?;
                content.exhausted()?;
                Ok(Some(res))
            }
        }
    }

    /// Makes sure the next value is present.
    fn mandatory<F, T>(
        &mut self, op: F,
    ) -> Result<T, DecodeError<S::Error>>
    where
        F: FnOnce(
            &mut Constructed<S>
        ) -> Result<Option<T>, DecodeError<S::Error>>,
    {
        match op(self)? {
            Some(res) => Ok(res),
            None => Err(self.source.content_err("missing futher values")),
        }
    }
}

/// # Processing Contained Values
///
/// The methods in this section each process one value of the constructed
/// value’s content.
impl<'a, S: Source + 'a> Constructed<'a, S> {
    /// Process one value of content.
    ///
    /// The closure `op` receives the tag and content of the next value
    /// and must process it completely, advancing to the content’s end.
    ///
    /// Upon success, the method returns the closure’s return value. The
    /// method returns a malformed error if there isn’t at least one more
    /// value available. It also returns an error if the closure returns one
    /// or if reading from the source fails.
    pub fn take_value<F, T>(
        &mut self, op: F,
    ) -> Result<T, DecodeError<S::Error>>
    where
        F: FnOnce(Tag, &mut Content<S>) -> Result<T, DecodeError<S::Error>>,
    {
        match self.process_next_value(None, op)? {
            Some(res) => Ok(res),
            None => Err(self.content_err("missing futher values")),
        }
    }

    /// Processes an optional value.
    ///
    /// If there is at least one more value available, the closure `op` is
    /// given the tag and content of that value and must process it
    /// completely, advancing to the end of its content. If the closure
    /// succeeds, its return value is returned as ‘some’ result.
    ///
    /// If there are no more values available, the method returns `Ok(None)`.
    /// It returns an error if the closure returns one or if reading from
    /// the source fails.
    pub fn take_opt_value<F, T>(
        &mut self, op: F,
    ) -> Result<Option<T>, DecodeError<S::Error>>
    where
        F: FnOnce(Tag, &mut Content<S>) -> Result<T, DecodeError<S::Error>>,
    {
        self.process_next_value(None, op)
    }

    /// Processes a value with the given tag.
    ///
    /// If the next value has the tag `expected`, its content is being given
    /// to the closure which has to process it completely and return whatever
    /// is being returned upon success.
    ///
    /// The method will return a malformed error if it encounters any other
    /// tag or the end of the value. It will also return an error if the
    /// closure returns an error or doesn’t process the complete values, or
    /// if accessing the underlying source fails.
    pub fn take_value_if<F, T>(
        &mut self,
        expected: Tag,
        op: F
    ) -> Result<T, DecodeError<S::Error>>
    where F: FnOnce(&mut Content<S>) -> Result<T, DecodeError<S::Error>> {
        let res = self.process_next_value(Some(expected), |_, content| {
            op(content)
        })?;
        match res {
            Some(res) => Ok(res),
            None => Err(self.content_err(ExpectedTag(expected))),
        }
    }

    /// Processes an optional value with the given tag.
    ///
    /// If the next value has the tag `expected`, its content is being given
    /// to the closure which has to process it completely and return whatever
    /// is to be returned as some value.
    ///
    /// If the next value has a different tag or if the end of the value has
    /// been reached, the method returns `Ok(None)`. It will return an error
    /// if the closure fails or doesn’t process the complete value, or if
    /// accessing the underlying source fails.
    pub fn take_opt_value_if<F, T>(
        &mut self,
        expected: Tag,
        op: F
    ) -> Result<Option<T>, DecodeError<S::Error>>
    where F: FnOnce(&mut Content<S>) -> Result<T, DecodeError<S::Error>> {
        self.process_next_value(Some(expected), |_, content| op(content))
    }

    /// Processes a constructed value.
    ///
    /// If the next value is a constructed value, its tag and content are
    /// being given to the closure `op` which has to process it completely.
    /// If it succeeds, its return value is returned.
    ///
    /// If the next value is not a constructed value or there is no next
    /// value or if the closure doesn’t process the next value completely,
    /// a malformed error is returned. An error is also returned if the
    /// closure returns one or if accessing the underlying source fails.
    pub fn take_constructed<F, T>(
        &mut self, op: F
    ) -> Result<T, DecodeError<S::Error>>
    where
        F: FnOnce(
            Tag, &mut Constructed<S>
        ) -> Result<T, DecodeError<S::Error>>,
    {
        self.mandatory(|cons| cons.take_opt_constructed(op))
    }

    /// Processes an optional constructed value.
    ///
    /// If the next value is a constructed value, its tag and content are
    /// being given to the closure `op` which has to process it completely.
    /// If it succeeds, its return value is returned as some value.
    ///
    /// If the end of the value has been reached, the method returns
    /// `Ok(None)`.
    ///
    /// If the next value is not a constructed value or if the closure
    /// doesn’t process the next value completely, a malformed error is
    /// returned. An error is also returned if the closure returns one or
    /// if accessing the underlying source fails.
    pub fn take_opt_constructed<F, T>(
        &mut self,
        op: F
    ) -> Result<Option<T>, DecodeError<S::Error>>
    where
        F: FnOnce(
            Tag, &mut Constructed<S>,
        ) -> Result<T, DecodeError<S::Error>>
    {
        self.process_next_value(None, |tag, content| {
            op(tag, content.as_constructed()?)
        })
    }

    /// Processes a constructed value with a required tag.
    ///
    /// If the next value is a constructed value with a tag equal to
    /// `expected`, its content is given to the closure `op` which has to
    /// process it completely. If the closure succeeds, its return value
    /// is returned.
    ///
    /// If the next value is not constructed or has a different tag, if
    /// the end of the value has been reached, or if the closure does not
    /// process the contained value’s content completely, a malformed error
    /// is returned. An error is also returned if the closure returns one or
    /// if accessing the underlying source fails.
    pub fn take_constructed_if<F, T>(
        &mut self,
        expected: Tag,
        op: F,
    ) -> Result<T, DecodeError<S::Error>>
    where
        F: FnOnce(&mut Constructed<S>) -> Result<T, DecodeError<S::Error>>,
    {
        self.mandatory(|cons| cons.take_opt_constructed_if(expected, op))
    }

    /// Processes an optional constructed value if it has a given tag.
    ///
    /// If the next value is a constructed value with a tag equal to
    /// `expected`, its content is given to the closure `op` which has to
    /// process it completely. If the closure succeeds, its return value
    /// is returned.
    ///
    /// If the next value is not constructed, does not have the expected tag,
    /// or the end of this value has been reached, the method returns
    /// `Ok(None)`. It returns a malformed error if the closure does not
    /// process the content of the next value fully.
    ///
    /// An error is also returned if the closure returns one or if accessing
    /// the underlying source fails.
    pub fn take_opt_constructed_if<F, T>(
        &mut self,
        expected: Tag,
        op: F,
    ) -> Result<Option<T>, DecodeError<S::Error>>
    where
        F: FnOnce(&mut Constructed<S>) -> Result<T, DecodeError<S::Error>>,
    {
        self.process_next_value(Some(expected), |_, content| {
            op(content.as_constructed()?)
        })
    }

    /// Processes a primitive value.
    ///
    /// If the next value is primitive, its tag and content are given to the
    /// closure `op` which has to process it fully. Upon success, the
    /// closure’s return value is returned.
    ///
    /// If the next value is not primitive, if the end of value has been
    /// reached, or if the closure fails to process the next value’s content
    /// fully, a malformed error is returned. An error is also returned if
    /// the closure returns one or if accessing the underlying source fails.
    pub fn take_primitive<F, T>(
        &mut self, op: F,
    ) -> Result<T, DecodeError<S::Error>>
    where
        F: FnOnce(Tag, &mut Primitive<S>) -> Result<T, DecodeError<S::Error>>,
    {
        self.mandatory(|cons| cons.take_opt_primitive(op))
    }

    /// Processes an optional primitive value.
    ///
    /// If the next value is primitive, its tag and content are given to the
    /// closure `op` which has to process it fully. Upon success, the
    /// closure’s return value is returned.
    /// 
    /// If the next value is not primitive or if the end of value has been
    /// reached, `Ok(None)` is returned.
    /// If the closure fails to process the next value’s content fully, a
    /// malformed error is returned. An error is also returned if
    /// the closure returns one or if accessing the underlying source fails.
    pub fn take_opt_primitive<F, T>(
        &mut self, op: F,
    ) -> Result<Option<T>, DecodeError<S::Error>>
    where
        F: FnOnce(Tag, &mut Primitive<S>) -> Result<T, DecodeError<S::Error>>,
    {
        self.process_next_value(None, |tag, content| {
            op(tag, content.as_primitive()?)
        })
    }

    /// Processes a primitive value if it has the right tag.
    ///
    /// If the next value is a primitive and its tag matches `expected`, its
    /// content is given to the closure `op` which has to process it
    /// completely or return an error, either of which is returned.
    ///
    /// The method returns a malformed error if there is no next value, if the
    /// next value is not a primitive, if it doesn’t have the right tag, or if
    /// the closure doesn’t advance over the complete content. If access to
    /// the underlying source fails, an error is returned, too.
    pub fn take_primitive_if<F, T>(
        &mut self, expected: Tag, op: F,
    ) -> Result<T, DecodeError<S::Error>>
    where F: FnOnce(&mut Primitive<S>) -> Result<T, DecodeError<S::Error>> {
        self.mandatory(|cons| cons.take_opt_primitive_if(expected, op))
    }

    /// Processes an optional primitive value of a given tag.
    ///
    /// If the next value is a primitive and its tag matches `expected`, its
    /// content is given to the closure `op` which has to process it
    /// completely or return an error, either of which is returned.
    ///
    /// If the end of this value has been reached, if the next value is not
    /// a primitive or if its tag doesn’t match, the method returns
    /// `Ok(None)`. If the closure doesn’t process the next value’s content
    /// fully the method returns a malformed error. If access to the
    /// underlying source fails, it returns an appropriate error.
    pub fn take_opt_primitive_if<F, T>(
        &mut self, expected: Tag, op: F,
    ) -> Result<Option<T>, DecodeError<S::Error>>
    where F: FnOnce(&mut Primitive<S>) -> Result<T, DecodeError<S::Error>> {
        self.process_next_value(Some(expected), |_, content| {
            op(content.as_primitive()?)
        })
    }

    /// Captures content for later processing
    ///
    /// The method gives a representation of the content to the closure `op`.
    /// If it succeeds, it returns whatever the closure advanced over as a
    /// [`Captured`] value.
    ///
    /// The closure may process no, one, several, or all values of this
    /// value’s content.
    ///
    /// If the closure returns an error, this error is returned.
    ///
    /// [`Captured`]: ../captures/struct.Captured.html
    pub fn capture<F>(
        &mut self, op: F,
    ) -> Result<Captured, DecodeError<S::Error>>
    where
        F: FnOnce(
            &mut Constructed<CaptureSource<LimitedSource<S>>>
        ) -> Result<(), DecodeError<S::Error>>
    {
        let limit = self.source.limit();
        let start = self.source.pos();
        let mut source = LimitedSource::new(CaptureSource::new(self.source));
        source.set_limit(limit);
        {
            let mut constructed = Constructed::new(
                &mut source, self.state, self.mode
            );
            op(&mut constructed)?;
            self.state = constructed.state;
        }
        Ok(Captured::new(
            source.unwrap().into_bytes(), self.mode, start,
        ))
    }

    /// Captures one value for later processing
    ///
    /// The method takes the next value from this value’s content, whatever
    /// it its, end returns its encoded form as a [`Captured`] value.
    ///
    /// If there is no next value, a malformed error is returned. If access
    /// to the underlying source fails, an appropriate error is returned.
    ///
    /// [`Captured`]: ../captures/struct.Captured.html
    pub fn capture_one(&mut self) -> Result<Captured, DecodeError<S::Error>> {
        self.capture(|cons| cons.mandatory(|cons| cons.skip_one()))
    }

    /// Captures all remaining content for later processing.
    ///
    /// The method takes all remaining values from this value’s content and
    /// returns their encoded form in a `Bytes` value.
    pub fn capture_all(
        &mut self
    ) -> Result<Captured, DecodeError<S::Error>> {
        self.capture(|cons| cons.skip_all())
    }

    /// Skips over content.
    pub fn skip_opt<F>(
        &mut self, mut op: F,
    ) -> Result<Option<()>, DecodeError<S::Error>>
    where F: FnMut(Tag, bool, usize) -> Result<(), ContentError> {
        // If we already know we are at the end of the value, we can return.
        if self.is_exhausted() {
            return Ok(None)
        }

        // The stack for unrolling the recursion. For each level, we keep the
        // limit the source should be set to when the value ends. For
        // indefinite values, we keep `None`.
        let mut stack = SmallVec::<[Option<Option<usize>>; 4]>::new();

        loop {
            // Get a the ‘header’ of a value.
            let (tag, constructed) = Tag::take_from(self.source)?;
            let length = Length::take_from(self.source, self.mode)?;

            if !constructed {
                if tag == Tag::END_OF_VALUE {
                    if length != Length::Definite(0) {
                        return Err(self.content_err("non-empty end of value"))
                    }

                    // End-of-value: The top of the stack needs to be an
                    // indefinite value for it to be allowed. If it is, pop
                    // that value off the stack and continue. The limit is
                    // still that from the value one level above.
                    match stack.pop() {
                        Some(None) => { }
                        None => {
                            // We read end-of-value as the very first value.
                            // This can only happen if the outer value is
                            // an indefinite value. If so, change state and
                            // return.
                            if self.state == State::Indefinite {
                                self.state = State::Done;
                                return Ok(None)
                            }
                            else {
                                return Err(self.content_err(
                                    "invalid nested values"
                                ))
                            }
                        }
                        _ => {
                            return Err(self.content_err(
                                "invalid nested values"
                            ))
                        }
                    }
                }
                else {
                    // Primitive value. Check for the length to be definite,
                    // check that the caller likes it, then try to read over
                    // it.
                    if let Length::Definite(len) = length {
                        if let Err(err) = op(tag, constructed, stack.len()) {
                            return Err(self.content_err(err));
                        }
                        self.source.advance(len);
                    }
                    else {
                        return Err(self.content_err(
                            "primitive value with indefinite length"
                        ))
                    }
                }
            }
            else if let Length::Definite(len) = length {
                // Definite constructed value. First check if the caller
                // likes it. Check that there is enough limit left for the
                // value. If so, push the limit at the end of the value to
                // the stack, update the limit to our length, and continue.
                if let Err(err) = op(tag, constructed, stack.len()) {
                    return Err(self.content_err(err));
                }
                stack.push(Some(match self.source.limit() {
                    Some(limit) => {
                        match limit.checked_sub(len) {
                            Some(len) => Some(len),
                            None => {
                                return Err(self.content_err(
                                    "invalid nested values"
                                ));
                            }
                        }
                    }
                    None => None,
                }));
                self.source.set_limit(Some(len));
            }
            else {
                // Indefinite constructed value. Simply push a `None` to the
                // stack, if the caller likes it.
                if let Err(err) = op(tag, constructed, stack.len()) {
                    return Err(self.content_err(err));
                }
                stack.push(None);
                continue;
            }

            // Now we need to check if we have reached the end of a
            // constructed value. This happens if the limit of the
            // source reaches 0. Since the ends of several stacked values
            // can align, we need to loop here. Also, if we run out of
            // stack, we are done.
            loop {
                if stack.is_empty() {
                    return Ok(Some(()))
                }
                else if self.source.limit() == Some(0) {
                    match stack.pop() {
                        Some(Some(limit)) => {
                            self.source.set_limit(limit)
                        }
                        Some(None) => {
                            // We need a End-of-value, so running out of
                            // data is an error.
                            return Err(self.content_err("
                                missing futher values"
                            ))
                        }
                        None => unreachable!(),
                    }
                }
                else {
                    break;
                }
            }

        }
    }

    pub fn skip<F>(&mut self, op: F) -> Result<(), DecodeError<S::Error>>
    where F: FnMut(Tag, bool, usize) -> Result<(), ContentError> {
        self.mandatory(|cons| cons.skip_opt(op))
    }

    /// Skips over all remaining content.
    pub fn skip_all(&mut self) -> Result<(), DecodeError<S::Error>> {
        while let Some(()) = self.skip_one()? { }
        Ok(())
    }

    /// Attempts to skip over the next value.
    ///
    /// If there is a next value, returns `Ok(Some(()))`, if the end of value
    /// has already been reached, returns `Ok(None)`.
    pub fn skip_one(&mut self) -> Result<Option<()>, DecodeError<S::Error>> {
        if self.is_exhausted() {
            Ok(None)
        }
        else {
            self.skip(|_, _, _| Ok(()))?;
            Ok(Some(()))
        }
    }
}


/// # Processing Standard Values
///
/// These methods provide short-cuts for processing fundamental values in
/// their standard form. That is, the values use their regular tag and
/// encoding.
impl<'a, S: Source + 'a> Constructed<'a, S> {
    /// Processes and returns a mandatory boolean value.
    pub fn take_bool(&mut self) -> Result<bool, DecodeError<S::Error>> {
        self.take_primitive_if(Tag::BOOLEAN, |prim| prim.to_bool())
    }

    /// Processes and returns an optional boolean value.
    pub fn take_opt_bool(
        &mut self,
    ) -> Result<Option<bool>, DecodeError<S::Error>> {
        self.take_opt_primitive_if(Tag::BOOLEAN, |prim| prim.to_bool())
    }

    /// Processes a mandatory NULL value.
    pub fn take_null(&mut self) -> Result<(), DecodeError<S::Error>> {
        self.take_primitive_if(Tag::NULL, |_| Ok(())).map(|_| ())
    }

    /// Processes an optional NULL value.
    pub fn take_opt_null(&mut self) -> Result<(), DecodeError<S::Error>> {
        self.take_opt_primitive_if(Tag::NULL, |_| Ok(())).map(|_| ())
    }

    /// Processes a mandatory INTEGER value of the `u8` range.
    ///
    /// If the integer value is less than 0 or greater than 255, a malformed
    /// error is returned.
    pub fn take_u8(&mut self) -> Result<u8, DecodeError<S::Error>> {
        self.take_primitive_if(Tag::INTEGER, |prim| prim.to_u8())
    }

    /// Processes an optional INTEGER value of the `u8` range.
    ///
    /// If the integer value is less than 0 or greater than 255, a malformed
    /// error is returned.
    pub fn take_opt_u8(
        &mut self,
    ) -> Result<Option<u8>, DecodeError<S::Error>> {
        self.take_opt_primitive_if(Tag::INTEGER, |prim| prim.to_u8())
    }

    /// Skips over a mandatory INTEGER if it has the given value.
    ///
    /// If the next value is an integer but of a different value, returns
    /// a malformed error.
    pub fn skip_u8_if(
        &mut self, expected: u8,
    ) -> Result<(), DecodeError<S::Error>> {
        self.take_primitive_if(Tag::INTEGER, |prim| {
            let got = prim.take_u8()?;
            if got != expected {
                Err(prim.content_err(ExpectedIntValue(expected)))
            }
            else {
                Ok(())
            }
        })
    }

    /// Skips over an optional INTEGER if it has the given value.
    ///
    /// If the next value is an integer but of a different value, returns
    /// a malformed error.
    pub fn skip_opt_u8_if(
        &mut self, expected: u8,
    ) -> Result<(), DecodeError<S::Error>> {
        self.take_opt_primitive_if(Tag::INTEGER, |prim| {
            let got = prim.take_u8()?;
            if got != expected {
                Err(prim.content_err(ExpectedIntValue(expected)))
            }
            else {
                Ok(())
            }
        }).map(|_| ())
    }

    /// Processes a mandatory INTEGER value of the `u16` range.
    ///
    /// If the integer value is less than 0 or greater than 65535, a
    /// malformed error is returned.
    pub fn take_u16(&mut self) -> Result<u16, DecodeError<S::Error>> {
        self.take_primitive_if(Tag::INTEGER, |prim| prim.to_u16())
    }

    /// Processes an optional INTEGER value of the `u16` range.
    ///
    /// If the integer value is less than 0 or greater than 65535, a
    /// malformed error is returned.
    pub fn take_opt_u16(
        &mut self,
    ) -> Result<Option<u16>, DecodeError<S::Error>> {
        self.take_opt_primitive_if(Tag::INTEGER, |prim| prim.to_u16())
    }

    /// Processes a mandatory INTEGER value of the `u32` range.
    ///
    /// If the integer value is less than 0 or greater than 2^32-1, a
    /// malformed error is returned.
    pub fn take_u32(&mut self) -> Result<u32, DecodeError<S::Error>> {
        self.take_primitive_if(Tag::INTEGER, |prim| prim.to_u32())
    }

    /// Processes a optional INTEGER value of the `u32` range.
    ///
    /// If the integer value is less than 0 or greater than 2^32-1, a
    /// malformed error is returned.
    pub fn take_opt_u32(
        &mut self,
    ) -> Result<Option<u32>, DecodeError<S::Error>> {
        self.take_opt_primitive_if(Tag::INTEGER, |prim| prim.to_u32())
    }

    /// Processes a mandatory INTEGER value of the `u64` range.
    ///
    /// If the integer value is less than 0 or greater than 2^64-1, a
    /// malformed error is returned.
    pub fn take_u64(&mut self) -> Result<u64, DecodeError<S::Error>> {
        self.take_primitive_if(Tag::INTEGER, |prim| prim.to_u64())
    }

    /// Processes a optional INTEGER value of the `u64` range.
    ///
    /// If the integer value is less than 0 or greater than 2^64-1, a
    /// malformed error is returned.
    pub fn take_opt_u64(
        &mut self,
    ) -> Result<Option<u64>, DecodeError<S::Error>> {
        self.take_opt_primitive_if(Tag::INTEGER, |prim| prim.to_u64())
    }

    /// Processes a mandatory SEQUENCE value.
    ///
    /// This is a shortcut for `self.take_constructed(Tag::SEQUENCE, op)`.
    pub fn take_sequence<F, T>(
        &mut self, op: F,
    ) -> Result<T, DecodeError<S::Error>>
    where F: FnOnce(&mut Constructed<S>) -> Result<T, DecodeError<S::Error>> {
        self.take_constructed_if(Tag::SEQUENCE, op)
    }

    /// Processes an optional SEQUENCE value.
    ///
    /// This is a shortcut for
    /// `self.take_opt_constructed(Tag::SEQUENCE, op)`.
    pub fn take_opt_sequence<F, T>(
        &mut self, op: F,
    ) -> Result<Option<T>, DecodeError<S::Error>>
    where F: FnOnce(&mut Constructed<S>) -> Result<T, DecodeError<S::Error>> {
        self.take_opt_constructed_if(Tag::SEQUENCE, op)
    }

    /// Processes a mandatory SET value.
    ///
    /// This is a shortcut for `self.take_constructed(Tag::SET, op)`.
    pub fn take_set<F, T>(
        &mut self, op: F,
    ) -> Result<T, DecodeError<S::Error>>
    where F: FnOnce(&mut Constructed<S>) -> Result<T, DecodeError<S::Error>> {
        self.take_constructed_if(Tag::SET, op)
    }

    /// Processes an optional SET value.
    ///
    /// This is a shortcut for `self.take_opt_constructed(Tag::SET, op)`.
    pub fn take_opt_set<F, T>(
        &mut self, op: F
    ) -> Result<Option<T>, DecodeError<S::Error>>
    where F: FnOnce(&mut Constructed<S>) -> Result<T, DecodeError<S::Error>> {
        self.take_opt_constructed_if(Tag::SET, op)
    }
}


//------------ State ---------------------------------------------------------

/// The processing state of a constructed value.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
enum State {
    /// We are reading until the end of the reader.
    Definite,

    /// Indefinite value, we haven’t reached the end yet.
    Indefinite,

    /// End of indefinite value reached.
    Done,

    /// Unbounded value: read as far as we get.
    Unbounded,
}


//============ Error Types ===================================================

/// A value with a certain tag was expected.
#[derive(Clone, Copy, Debug)]
struct ExpectedTag(Tag);

impl fmt::Display for ExpectedTag {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "expected tag {}", self.0)
    }
}

impl From<ExpectedTag> for ContentError {
    fn from(err: ExpectedTag) -> Self {
        ContentError::from_boxed(Box::new(err))
    }
}


/// An integer with a certain value was expected.
#[derive(Clone, Copy, Debug)]
struct ExpectedIntValue<T>(T);

impl<T: fmt::Display> fmt::Display for ExpectedIntValue<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "expected integer value {}", self.0)
    }
}

impl<T> From<ExpectedIntValue<T>> for ContentError
where T: fmt::Display + Send + Sync + 'static {
    fn from(err: ExpectedIntValue<T>) -> Self {
        ContentError::from_boxed(Box::new(err))
    }
}
 

//============ Tests =========================================================

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn constructed_skip() {
        // Two primitives.
        Constructed::decode(
            b"\x02\x01\x00\x02\x01\x00".into_source(), Mode::Ber, |cons| {
                cons.skip(|_, _, _| Ok(())).unwrap();
                cons.skip(|_, _, _| Ok(())).unwrap();
                Ok(())
            }
        ).unwrap();

        // One definite constructed with two primitives, then one primitive
        Constructed::decode(
            b"\x30\x06\x02\x01\x00\x02\x01\x00\x02\x01\x00".into_source(),
            Mode::Ber,
            |cons| {
                cons.skip(|_, _, _| Ok(())).unwrap();
                cons.skip(|_, _, _| Ok(())).unwrap();
                Ok(())
            }
        ).unwrap();

        // Two nested definite constructeds with two primitives, then one
        // primitive.
        Constructed::decode(
            b"\x30\x08\
            \x30\x06\
            \x02\x01\x00\x02\x01\x00\
            \x02\x01\x00".into_source(),
            Mode::Ber,
            |cons| {
                cons.skip(|_, _, _| Ok(())).unwrap();
                cons.skip(|_, _, _| Ok(())).unwrap();
                Ok(())
            }
        ).unwrap();

        // One definite constructed with one indefinite with two primitives.
        Constructed::decode(
            b"\x30\x0A\
            \x30\x80\
            \x02\x01\x00\x02\x01\x00\
            \0\0".into_source(),
            Mode::Ber,
            |cons| {
                cons.skip(|_, _, _| Ok(())).unwrap();
                Ok(())
            }
        ).unwrap();
    }
}