1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
//! Parsing BER encoded values.
//!
//! This is an internal module. Its public types are re-exported by the
//! parent.
#![allow(unused_imports)]
#![allow(dead_code)]
use std::fmt;
use std::convert::Infallible;
use bytes::Bytes;
use smallvec::SmallVec;
use crate::captured::Captured;
use crate::int::{Integer, Unsigned};
use crate::length::Length;
use crate::mode::Mode;
use crate::tag::Tag;
use super::error::{ContentError, DecodeError};
use super::source::{
CaptureSource, IntoSource, LimitedSource, Pos, SliceSource, Source,
};
//------------ Content -------------------------------------------------------
/// The content octets of a BER-encoded value.
///
/// A value is either primitive, containing actual octets of an actual value,
/// or constructed, in which case its content contains additional BER encoded
/// values. This enum is useful for cases where a certain type may be encoded
/// as either a primitive value or a complex constructed value.
///
/// Note that this type represents the content octets only, i.e., it does not
/// contain the tag of the value.
pub enum Content<'a, S: 'a> {
/// The value is a primitive value.
Primitive(Primitive<'a, S>),
/// The value is a constructed value.
Constructed(Constructed<'a, S>)
}
impl<'a, S: Source + 'a> Content<'a, S> {
/// Checks that the content has been parsed completely.
///
/// Returns a malformed error if not.
fn exhausted(self) -> Result<(), DecodeError<S::Error>> {
match self {
Content::Primitive(inner) => inner.exhausted(),
Content::Constructed(mut inner) => inner.exhausted()
}
}
/// Returns the encoding mode used by the value.
pub fn mode(&self) -> Mode {
match *self {
Content::Primitive(ref inner) => inner.mode(),
Content::Constructed(ref inner) => inner.mode()
}
}
/// Returns whether this value is a primitive value.
pub fn is_primitive(&self) -> bool {
match *self {
Content::Primitive(_) => true,
Content::Constructed(_) => false,
}
}
/// Returns whether this value is a constructed value.
pub fn is_constructed(&self) -> bool {
match *self {
Content::Primitive(_) => false,
Content::Constructed(_) => true,
}
}
/// Converts a reference into into one to a primitive value or errors out.
pub fn as_primitive(
&mut self
) -> Result<&mut Primitive<'a, S>, DecodeError<S::Error>> {
match *self {
Content::Primitive(ref mut inner) => Ok(inner),
Content::Constructed(ref inner) => {
Err(inner.content_err("expected primitive value"))
}
}
}
/// Converts a reference into on to a constructed value or errors out.
pub fn as_constructed(
&mut self
) -> Result<&mut Constructed<'a, S>, DecodeError<S::Error>> {
match *self {
Content::Primitive(ref inner) => {
Err(inner.content_err("expected constructed value"))
}
Content::Constructed(ref mut inner) => Ok(inner),
}
}
/// Produces a content error at the current source position.
pub fn content_err(
&self, err: impl Into<ContentError>,
) -> DecodeError<S::Error> {
match *self {
Content::Primitive(ref inner) => inner.content_err(err),
Content::Constructed(ref inner) => inner.content_err(err),
}
}
}
#[allow(clippy::wrong_self_convention)]
impl<'a, S: Source + 'a> Content<'a, S> {
/// Converts content into a `u8`.
///
/// If the content is not primitive or does not contain a single BER
/// encoded INTEGER value between 0 and 256, returns a malformed error.
pub fn to_u8(&mut self) -> Result<u8, DecodeError<S::Error>> {
if let Content::Primitive(ref mut prim) = *self {
prim.to_u8()
}
else {
Err(self.content_err("expected integer (0..255)"))
}
}
/// Skips over the content if it contains an INTEGER of value `expected`.
///
/// The content needs to be primitive and contain a validly encoded
/// integer of value `expected` or else a malformed error will be
/// returned.
pub fn skip_u8_if(
&mut self, expected: u8,
) -> Result<(), DecodeError<S::Error>> {
let res = self.to_u8()?;
if res == expected {
Ok(())
}
else {
Err(self.content_err(ExpectedIntValue(expected)))
}
}
/// Converts content into a `u16`.
///
/// If the content is not primitive or does not contain a single BER
/// encoded INTEGER value between 0 and 2^16-1, returns a malformed error.
pub fn to_u16(&mut self) -> Result<u16, DecodeError<S::Error>> {
if let Content::Primitive(ref mut prim) = *self {
prim.to_u16()
}
else {
Err(self.content_err("expected integer (0..65535)"))
}
}
/// Converts content into a `u32`.
///
/// If the content is not primitive or does not contain a single BER
/// encoded INTEGER value between 0 and 2^32-1, returns a malformed error.
pub fn to_u32(&mut self) -> Result<u32, DecodeError<S::Error>> {
if let Content::Primitive(ref mut prim) = *self {
prim.to_u32()
}
else {
Err(self.content_err("expected integer (0..4294967295)"))
}
}
/// Converts content into a `u64`.
///
/// If the content is not primitive or does not contain a single BER
/// encoded INTEGER value between 0 and 2^64-1, returns a malformed error.
pub fn to_u64(&mut self) -> Result<u64, DecodeError<S::Error>> {
if let Content::Primitive(ref mut prim) = *self {
prim.to_u64()
}
else {
Err(self.content_err("expected integer (0..2**64-1)"))
}
}
/// Converts the content into a NULL value.
///
/// If the content isn’t primitive and contains a single BER encoded
/// NULL value (i.e., nothing), returns a malformed error.
pub fn to_null(&mut self) -> Result<(), DecodeError<S::Error>> {
if let Content::Primitive(ref mut prim) = *self {
prim.to_null()
}
else {
Err(self.content_err("expected NULL"))
}
}
}
//------------ Primitive -----------------------------------------------------
/// The content octets of a primitive value.
///
/// You will receive a reference to a value of this type through a closure,
/// possibly wrapped in a `Content` value. Your task will be to read out all
/// the octets of the value before returning from the closure or produce an
/// error if the value isn’t correctly encoded. If you read less octets than
/// are available, whoever called the closure will produce an error after
/// you returned. Thus, you can read as many octets as you expect and not
/// bother to check whether that was all available octets.
///
/// The most basic way to do this is through the primitive’s implementation
/// of the `Source` trait. Thus, you can gain access to some or all of the
/// octets and mark them read by advancing over them. You can safely attempt
/// to read more octets than available as that will reliably result in a
/// malformed error.
///
/// A number of methods are available to deal with the encodings defined for
/// various types. These are prefixed by `to_` to indicate that they are
/// intended to convert the content to a certain type. They all read exactly
/// one encoded value.
///
/// The value provides access to the decoding mode via the `mode` method.
/// All methodes that decode data will honour the decoding mode and enforce
/// that data is encoded according to the mode.
pub struct Primitive<'a, S: 'a> {
/// The underlying source limited to the length of the value.
source: &'a mut LimitedSource<S>,
/// The decoding mode to operate in.
mode: Mode,
/// The start position of the value in the source.
start: Pos,
}
/// # Value Management
///
impl<'a, S: 'a> Primitive<'a, S> {
/// Creates a new primitive from the given source and mode.
fn new(source: &'a mut LimitedSource<S>, mode: Mode) -> Self
where S: Source {
Primitive { start: source.pos(), source, mode }
}
/// Returns the current decoding mode.
///
/// The higher-level `to_` methods will use this mode to enforce that
/// data is encoded correctly.
pub fn mode(&self) -> Mode {
self.mode
}
/// Sets the current decoding mode.
pub fn set_mode(&mut self, mode: Mode) {
self.mode = mode
}
}
impl<'a, S: Source + 'a> Primitive<'a, S> {
/// Produces a content error at the current source position.
pub fn content_err(
&self, err: impl Into<ContentError>,
) -> DecodeError<S::Error> {
DecodeError::content(err, self.start)
}
}
/// # High-level Decoding
///
#[allow(clippy::wrong_self_convention)]
impl<'a, S: Source + 'a> Primitive<'a, S> {
/// Parses the primitive value as a BOOLEAN value.
pub fn to_bool(&mut self) -> Result<bool, DecodeError<S::Error>> {
let res = self.take_u8()?;
if self.mode != Mode::Ber {
match res {
0 => Ok(false),
0xFF => Ok(true),
_ => {
Err(self.content_err("invalid boolean"))
}
}
}
else {
Ok(res != 0)
}
}
/// Parses the primitive value as an INTEGER limited to a `i8`.
pub fn to_i8(&mut self) -> Result<i8, DecodeError<S::Error>> {
Integer::i8_from_primitive(self)
}
/// Parses the primitive value as an INTEGER limited to a `i8`.
pub fn to_i16(&mut self) -> Result<i16, DecodeError<S::Error>> {
Integer::i16_from_primitive(self)
}
/// Parses the primitive value as an INTEGER limited to a `i8`.
pub fn to_i32(&mut self) -> Result<i32, DecodeError<S::Error>> {
Integer::i32_from_primitive(self)
}
/// Parses the primitive value as an INTEGER limited to a `i8`.
pub fn to_i64(&mut self) -> Result<i64, DecodeError<S::Error>> {
Integer::i64_from_primitive(self)
}
/// Parses the primitive value as an INTEGER limited to a `i8`.
pub fn to_i128(&mut self) -> Result<i128, DecodeError<S::Error>> {
Integer::i128_from_primitive(self)
}
/// Parses the primitive value as an INTEGER limited to a `u8`.
pub fn to_u8(&mut self) -> Result<u8, DecodeError<S::Error>> {
Unsigned::u8_from_primitive(self)
}
/// Parses the primitive value as an INTEGER limited to a `u16`.
pub fn to_u16(&mut self) -> Result<u16, DecodeError<S::Error>> {
Unsigned::u16_from_primitive(self)
}
/// Parses the primitive value as an INTEGER limited to a `u32`.
pub fn to_u32(&mut self) -> Result<u32, DecodeError<S::Error>> {
Unsigned::u32_from_primitive(self)
}
/// Parses the primitive value as a INTEGER value limited to a `u64`.
pub fn to_u64(&mut self) -> Result<u64, DecodeError<S::Error>> {
Unsigned::u64_from_primitive(self)
}
/// Parses the primitive value as a INTEGER value limited to a `u128`.
pub fn to_u128(&mut self) -> Result<u64, DecodeError<S::Error>> {
Unsigned::u64_from_primitive(self)
}
/// Converts the content octets to a NULL value.
///
/// Since such a value is empty, this doesn’t really do anything.
pub fn to_null(&mut self) -> Result<(), DecodeError<S::Error>> {
if self.remaining() > 0 {
Err(self.content_err("invalid NULL value"))
}
else {
Ok(())
}
}
}
/// # Low-level Access
///
/// For basic low-level access, `Primitive` implements the `Source` trait.
/// Because the length of the content is guaranteed to be known, it can
/// provide a few additional methods. Note that these may still fail because
/// the underlying source doesn’t guarantee that as many octets are actually
/// available.
impl<'a, S: Source + 'a> Primitive<'a, S> {
/// Returns the number of remaining octets.
///
/// The returned value reflects what is left of the expected length of
/// content and therefore decreases when the primitive is advanced.
pub fn remaining(&self) -> usize {
self.source.limit().unwrap()
}
/// Skips the rest of the content.
///
/// Returns a malformed error if the source ends before the expected
/// length of content.
pub fn skip_all(&mut self) -> Result<(), DecodeError<S::Error>> {
self.source.skip_all()
}
/// Returns the remainder of the content as a `Bytes` value.
pub fn take_all(&mut self) -> Result<Bytes, DecodeError<S::Error>> {
self.source.take_all()
}
/// Returns a bytes slice of the remainder of the content.
pub fn slice_all(&mut self) -> Result<&[u8], DecodeError<S::Error>> {
let remaining = self.remaining();
if self.source.request(remaining)? < remaining {
Err(self.source.content_err("unexpected end of data"))
}
else {
Ok(&self.source.slice()[..remaining])
}
}
/// Checkes whether all content has been advanced over.
fn exhausted(self) -> Result<(), DecodeError<S::Error>> {
self.source.exhausted()
}
}
/// # Support for Testing
///
impl Primitive<'static, ()> {
/// Decode a bytes slice via a closure.
///
/// This method can be used in testing code for decoding primitive
/// values by providing a bytes slice with the content. For instance,
/// decoding the `to_bool` method could be tested like this:
///
/// ```
/// use bcder::Mode;
/// use bcder::decode::Primitive;
///
/// assert_eq!(
/// Primitive::decode_slice(
/// b"\x00".as_ref(), Mode::Der,
/// |prim| prim.to_bool()
/// ).unwrap(),
/// false
/// )
/// ```
pub fn decode_slice<F, T>(
data: &[u8],
mode: Mode,
op: F
) -> Result<T, DecodeError<Infallible>>
where
F: FnOnce(
&mut Primitive<SliceSource>
) -> Result<T, DecodeError<Infallible>>
{
let mut lim = LimitedSource::new(data.into_source());
lim.set_limit(Some(data.len()));
let mut prim = Primitive::new(&mut lim, mode);
let res = op(&mut prim)?;
prim.exhausted()?;
Ok(res)
}
}
//--- Source
impl<'a, S: Source + 'a> Source for Primitive<'a, S> {
type Error = S::Error;
fn pos(&self) -> Pos {
self.source.pos()
}
fn request(&mut self, len: usize) -> Result<usize, Self::Error> {
self.source.request(len)
}
fn slice(&self) -> &[u8] {
self.source.slice()
}
fn bytes(&self, start: usize, end: usize) -> Bytes {
self.source.bytes(start, end)
}
fn advance(&mut self, len: usize) {
self.source.advance(len)
}
}
//------------ Constructed ---------------------------------------------------
/// The content octets of a constructed value.
///
/// You will only ever receive a mutable reference to a value of this type
/// as an argument to a closure provided to some function. The closure will
/// have to process all content of the constructed value.
///
/// Since constructed values consist of a sequence of values, the methods
/// allow you to process these values one by one. The most basic of these
/// are [`take_value`] and [`take_opt_value`] which process exactly one
/// value or up to one value. A number of convenience functions exists on
/// top of them for commonly encountered types and cases.
///
/// Because the caller of your closure checks whether all content has been
/// advanced over and raising an error of not, you only need to read as many
/// values as you expected to be present and can simply return when you think
/// you are done.
///
/// [`take_value`]: #method.take_value
/// [`take_opt_value`]: #method.take_opt_value
#[derive(Debug)]
pub struct Constructed<'a, S: 'a> {
/// The underlying source.
source: &'a mut LimitedSource<S>,
/// The state we are in so we can determine the end of the content.
state: State,
/// The encoding mode to use.
mode: Mode,
/// The start position of the value in the source.
start: Pos,
}
/// # General Management
///
impl<'a, S: Source + 'a> Constructed<'a, S> {
/// Creates a new source from the given components.
fn new(
source: &'a mut LimitedSource<S>,
state: State,
mode: Mode
) -> Self {
Constructed { start: source.pos(), source, state, mode }
}
/// Decode a source as constructed content.
///
/// The function will start decoding of `source` in the given mode. It
/// will pass a constructed content value to the closure `op` which
/// has to process all the content and return a result or error.
///
/// This function is identical to calling [`Mode::decode`].
///
/// [`Mode::decode`]: ../enum.Mode.html#method.decode
pub fn decode<I, F, T>(
source: I, mode: Mode, op: F,
) -> Result<T, DecodeError<S::Error>>
where
I: IntoSource<Source = S>,
F: FnOnce(&mut Constructed<S>) -> Result<T, DecodeError<S::Error>>
{
let mut source = LimitedSource::new(source.into_source());
let mut cons = Constructed::new(&mut source, State::Unbounded, mode);
let res = op(&mut cons)?;
cons.exhausted()?;
Ok(res)
}
/// Returns the encoding mode used by the value.
pub fn mode(&self) -> Mode {
self.mode
}
/// Sets the encoding mode to be used for the value.
pub fn set_mode(&mut self, mode: Mode) {
self.mode = mode
}
}
impl<'a, S: Source + 'a> Constructed<'a, S> {
/// Produces a content error at start of the value.
pub fn content_err(
&self, err: impl Into<ContentError>,
) -> DecodeError<S::Error> {
DecodeError::content(err, self.start)
}
}
/// # Fundamental Reading
///
impl<'a, S: Source + 'a> Constructed<'a, S> {
/// Checks whether all content has been advanced over.
///
/// For a value of definite length, this is the case when the limit of the
/// source has been reached. For indefinite values, we need to have either
/// already read or can now read the end-of-value marker.
fn exhausted(&mut self) -> Result<(), DecodeError<S::Error>> {
match self.state {
State::Done => Ok(()),
State::Definite => {
self.source.exhausted()
}
State::Indefinite => {
let (tag, constructed) = Tag::take_from(self.source)?;
if tag != Tag::END_OF_VALUE || constructed
|| !Length::take_from(self.source, self.mode)?.is_zero()
{
Err(self.content_err("unexpected trailing values"))
}
else {
Ok(())
}
}
State::Unbounded => Ok(())
}
}
/// Returns whether we have already reached the end.
///
/// For indefinite values, we may be at the end right now but don’t
/// know it yet.
fn is_exhausted(&self) -> bool {
match self.state {
State::Definite => {
self.source.limit().unwrap() == 0
}
State::Indefinite => false,
State::Done => true,
State::Unbounded => false,
}
}
/// Processes the next value.
///
/// If `expected` is not `None`, the method will only process a value
/// with the given tag and return `Ok(None)` if there isn’t another value
/// or if the next value has a different tag.
///
/// If `expected` is `None`, the method will process a value with any
/// tag and only return `Ok(None)` if it reached the end of the value.
///
/// The closure `op` receives both the tag and content for the next
/// value. It must process the value, advancing the source to its end
/// or return an error.
fn process_next_value<F, T>(
&mut self,
expected: Option<Tag>,
op: F
) -> Result<Option<T>, DecodeError<S::Error>>
where
F: FnOnce(Tag, &mut Content<S>) -> Result<T, DecodeError<S::Error>>
{
if self.is_exhausted() {
return Ok(None)
}
let (tag, constructed) = if let Some(expected) = expected {
(
expected,
match expected.take_from_if(self.source)? {
Some(compressed) => compressed,
None => return Ok(None)
}
)
}
else {
Tag::take_from(self.source)?
};
let length = Length::take_from(self.source, self.mode)?;
if tag == Tag::END_OF_VALUE {
if let State::Indefinite = self.state {
if constructed {
return Err(self.source.content_err(
"constructed end of value"
))
}
if !length.is_zero() {
return Err(self.source.content_err(
"non-empty end of value"
))
}
self.state = State::Done;
return Ok(None)
}
else {
return Err(self.source.content_err(
"unexpected end of value"
))
}
}
match length {
Length::Definite(len) => {
let old_limit = self.source.limit_further(Some(len));
let res = {
let mut content = if constructed {
// Definite length constructed values are not allowed
// in CER.
if self.mode == Mode::Cer {
return Err(self.source.content_err(
"definite length constructed in CER mode"
))
}
Content::Constructed(
Constructed::new(
self.source, State::Definite, self.mode
)
)
}
else {
Content::Primitive(
Primitive::new(self.source, self.mode)
)
};
let res = op(tag, &mut content)?;
content.exhausted()?;
res
};
self.source.set_limit(old_limit.map(|x| x - len));
Ok(Some(res))
}
Length::Indefinite => {
if !constructed || self.mode == Mode::Der {
return Err(self.source.content_err(
"indefinite length constructed in DER mode"
))
}
let mut content = Content::Constructed(
Constructed::new(
self.source, State::Indefinite, self.mode
)
);
let res = op(tag, &mut content)?;
content.exhausted()?;
Ok(Some(res))
}
}
}
/// Makes sure the next value is present.
fn mandatory<F, T>(
&mut self, op: F,
) -> Result<T, DecodeError<S::Error>>
where
F: FnOnce(
&mut Constructed<S>
) -> Result<Option<T>, DecodeError<S::Error>>,
{
match op(self)? {
Some(res) => Ok(res),
None => Err(self.source.content_err("missing futher values")),
}
}
}
/// # Processing Contained Values
///
/// The methods in this section each process one value of the constructed
/// value’s content.
impl<'a, S: Source + 'a> Constructed<'a, S> {
/// Process one value of content.
///
/// The closure `op` receives the tag and content of the next value
/// and must process it completely, advancing to the content’s end.
///
/// Upon success, the method returns the closure’s return value. The
/// method returns a malformed error if there isn’t at least one more
/// value available. It also returns an error if the closure returns one
/// or if reading from the source fails.
pub fn take_value<F, T>(
&mut self, op: F,
) -> Result<T, DecodeError<S::Error>>
where
F: FnOnce(Tag, &mut Content<S>) -> Result<T, DecodeError<S::Error>>,
{
match self.process_next_value(None, op)? {
Some(res) => Ok(res),
None => Err(self.content_err("missing futher values")),
}
}
/// Processes an optional value.
///
/// If there is at least one more value available, the closure `op` is
/// given the tag and content of that value and must process it
/// completely, advancing to the end of its content. If the closure
/// succeeds, its return value is returned as ‘some’ result.
///
/// If there are no more values available, the method returns `Ok(None)`.
/// It returns an error if the closure returns one or if reading from
/// the source fails.
pub fn take_opt_value<F, T>(
&mut self, op: F,
) -> Result<Option<T>, DecodeError<S::Error>>
where
F: FnOnce(Tag, &mut Content<S>) -> Result<T, DecodeError<S::Error>>,
{
self.process_next_value(None, op)
}
/// Processes a value with the given tag.
///
/// If the next value has the tag `expected`, its content is being given
/// to the closure which has to process it completely and return whatever
/// is being returned upon success.
///
/// The method will return a malformed error if it encounters any other
/// tag or the end of the value. It will also return an error if the
/// closure returns an error or doesn’t process the complete values, or
/// if accessing the underlying source fails.
pub fn take_value_if<F, T>(
&mut self,
expected: Tag,
op: F
) -> Result<T, DecodeError<S::Error>>
where F: FnOnce(&mut Content<S>) -> Result<T, DecodeError<S::Error>> {
let res = self.process_next_value(Some(expected), |_, content| {
op(content)
})?;
match res {
Some(res) => Ok(res),
None => Err(self.content_err(ExpectedTag(expected))),
}
}
/// Processes an optional value with the given tag.
///
/// If the next value has the tag `expected`, its content is being given
/// to the closure which has to process it completely and return whatever
/// is to be returned as some value.
///
/// If the next value has a different tag or if the end of the value has
/// been reached, the method returns `Ok(None)`. It will return an error
/// if the closure fails or doesn’t process the complete value, or if
/// accessing the underlying source fails.
pub fn take_opt_value_if<F, T>(
&mut self,
expected: Tag,
op: F
) -> Result<Option<T>, DecodeError<S::Error>>
where F: FnOnce(&mut Content<S>) -> Result<T, DecodeError<S::Error>> {
self.process_next_value(Some(expected), |_, content| op(content))
}
/// Processes a constructed value.
///
/// If the next value is a constructed value, its tag and content are
/// being given to the closure `op` which has to process it completely.
/// If it succeeds, its return value is returned.
///
/// If the next value is not a constructed value or there is no next
/// value or if the closure doesn’t process the next value completely,
/// a malformed error is returned. An error is also returned if the
/// closure returns one or if accessing the underlying source fails.
pub fn take_constructed<F, T>(
&mut self, op: F
) -> Result<T, DecodeError<S::Error>>
where
F: FnOnce(
Tag, &mut Constructed<S>
) -> Result<T, DecodeError<S::Error>>,
{
self.mandatory(|cons| cons.take_opt_constructed(op))
}
/// Processes an optional constructed value.
///
/// If the next value is a constructed value, its tag and content are
/// being given to the closure `op` which has to process it completely.
/// If it succeeds, its return value is returned as some value.
///
/// If the end of the value has been reached, the method returns
/// `Ok(None)`.
///
/// If the next value is not a constructed value or if the closure
/// doesn’t process the next value completely, a malformed error is
/// returned. An error is also returned if the closure returns one or
/// if accessing the underlying source fails.
pub fn take_opt_constructed<F, T>(
&mut self,
op: F
) -> Result<Option<T>, DecodeError<S::Error>>
where
F: FnOnce(
Tag, &mut Constructed<S>,
) -> Result<T, DecodeError<S::Error>>
{
self.process_next_value(None, |tag, content| {
op(tag, content.as_constructed()?)
})
}
/// Processes a constructed value with a required tag.
///
/// If the next value is a constructed value with a tag equal to
/// `expected`, its content is given to the closure `op` which has to
/// process it completely. If the closure succeeds, its return value
/// is returned.
///
/// If the next value is not constructed or has a different tag, if
/// the end of the value has been reached, or if the closure does not
/// process the contained value’s content completely, a malformed error
/// is returned. An error is also returned if the closure returns one or
/// if accessing the underlying source fails.
pub fn take_constructed_if<F, T>(
&mut self,
expected: Tag,
op: F,
) -> Result<T, DecodeError<S::Error>>
where
F: FnOnce(&mut Constructed<S>) -> Result<T, DecodeError<S::Error>>,
{
self.mandatory(|cons| cons.take_opt_constructed_if(expected, op))
}
/// Processes an optional constructed value if it has a given tag.
///
/// If the next value is a constructed value with a tag equal to
/// `expected`, its content is given to the closure `op` which has to
/// process it completely. If the closure succeeds, its return value
/// is returned.
///
/// If the next value is not constructed, does not have the expected tag,
/// or the end of this value has been reached, the method returns
/// `Ok(None)`. It returns a malformed error if the closure does not
/// process the content of the next value fully.
///
/// An error is also returned if the closure returns one or if accessing
/// the underlying source fails.
pub fn take_opt_constructed_if<F, T>(
&mut self,
expected: Tag,
op: F,
) -> Result<Option<T>, DecodeError<S::Error>>
where
F: FnOnce(&mut Constructed<S>) -> Result<T, DecodeError<S::Error>>,
{
self.process_next_value(Some(expected), |_, content| {
op(content.as_constructed()?)
})
}
/// Processes a primitive value.
///
/// If the next value is primitive, its tag and content are given to the
/// closure `op` which has to process it fully. Upon success, the
/// closure’s return value is returned.
///
/// If the next value is not primitive, if the end of value has been
/// reached, or if the closure fails to process the next value’s content
/// fully, a malformed error is returned. An error is also returned if
/// the closure returns one or if accessing the underlying source fails.
pub fn take_primitive<F, T>(
&mut self, op: F,
) -> Result<T, DecodeError<S::Error>>
where
F: FnOnce(Tag, &mut Primitive<S>) -> Result<T, DecodeError<S::Error>>,
{
self.mandatory(|cons| cons.take_opt_primitive(op))
}
/// Processes an optional primitive value.
///
/// If the next value is primitive, its tag and content are given to the
/// closure `op` which has to process it fully. Upon success, the
/// closure’s return value is returned.
///
/// If the next value is not primitive or if the end of value has been
/// reached, `Ok(None)` is returned.
/// If the closure fails to process the next value’s content fully, a
/// malformed error is returned. An error is also returned if
/// the closure returns one or if accessing the underlying source fails.
pub fn take_opt_primitive<F, T>(
&mut self, op: F,
) -> Result<Option<T>, DecodeError<S::Error>>
where
F: FnOnce(Tag, &mut Primitive<S>) -> Result<T, DecodeError<S::Error>>,
{
self.process_next_value(None, |tag, content| {
op(tag, content.as_primitive()?)
})
}
/// Processes a primitive value if it has the right tag.
///
/// If the next value is a primitive and its tag matches `expected`, its
/// content is given to the closure `op` which has to process it
/// completely or return an error, either of which is returned.
///
/// The method returns a malformed error if there is no next value, if the
/// next value is not a primitive, if it doesn’t have the right tag, or if
/// the closure doesn’t advance over the complete content. If access to
/// the underlying source fails, an error is returned, too.
pub fn take_primitive_if<F, T>(
&mut self, expected: Tag, op: F,
) -> Result<T, DecodeError<S::Error>>
where F: FnOnce(&mut Primitive<S>) -> Result<T, DecodeError<S::Error>> {
self.mandatory(|cons| cons.take_opt_primitive_if(expected, op))
}
/// Processes an optional primitive value of a given tag.
///
/// If the next value is a primitive and its tag matches `expected`, its
/// content is given to the closure `op` which has to process it
/// completely or return an error, either of which is returned.
///
/// If the end of this value has been reached, if the next value is not
/// a primitive or if its tag doesn’t match, the method returns
/// `Ok(None)`. If the closure doesn’t process the next value’s content
/// fully the method returns a malformed error. If access to the
/// underlying source fails, it returns an appropriate error.
pub fn take_opt_primitive_if<F, T>(
&mut self, expected: Tag, op: F,
) -> Result<Option<T>, DecodeError<S::Error>>
where F: FnOnce(&mut Primitive<S>) -> Result<T, DecodeError<S::Error>> {
self.process_next_value(Some(expected), |_, content| {
op(content.as_primitive()?)
})
}
/// Captures content for later processing
///
/// The method gives a representation of the content to the closure `op`.
/// If it succeeds, it returns whatever the closure advanced over as a
/// [`Captured`] value.
///
/// The closure may process no, one, several, or all values of this
/// value’s content.
///
/// If the closure returns an error, this error is returned.
///
/// [`Captured`]: ../captures/struct.Captured.html
pub fn capture<F>(
&mut self, op: F,
) -> Result<Captured, DecodeError<S::Error>>
where
F: FnOnce(
&mut Constructed<CaptureSource<LimitedSource<S>>>
) -> Result<(), DecodeError<S::Error>>
{
let limit = self.source.limit();
let start = self.source.pos();
let mut source = LimitedSource::new(CaptureSource::new(self.source));
source.set_limit(limit);
{
let mut constructed = Constructed::new(
&mut source, self.state, self.mode
);
op(&mut constructed)?;
self.state = constructed.state;
}
Ok(Captured::new(
source.unwrap().into_bytes(), self.mode, start,
))
}
/// Captures one value for later processing
///
/// The method takes the next value from this value’s content, whatever
/// it its, end returns its encoded form as a [`Captured`] value.
///
/// If there is no next value, a malformed error is returned. If access
/// to the underlying source fails, an appropriate error is returned.
///
/// [`Captured`]: ../captures/struct.Captured.html
pub fn capture_one(&mut self) -> Result<Captured, DecodeError<S::Error>> {
self.capture(|cons| cons.mandatory(|cons| cons.skip_one()))
}
/// Captures all remaining content for later processing.
///
/// The method takes all remaining values from this value’s content and
/// returns their encoded form in a `Bytes` value.
pub fn capture_all(
&mut self
) -> Result<Captured, DecodeError<S::Error>> {
self.capture(|cons| cons.skip_all())
}
/// Skips over content.
pub fn skip_opt<F>(
&mut self, mut op: F,
) -> Result<Option<()>, DecodeError<S::Error>>
where F: FnMut(Tag, bool, usize) -> Result<(), ContentError> {
// If we already know we are at the end of the value, we can return.
if self.is_exhausted() {
return Ok(None)
}
// The stack for unrolling the recursion. For each level, we keep the
// limit the source should be set to when the value ends. For
// indefinite values, we keep `None`.
let mut stack = SmallVec::<[Option<Option<usize>>; 4]>::new();
loop {
// Get a the ‘header’ of a value.
let (tag, constructed) = Tag::take_from(self.source)?;
let length = Length::take_from(self.source, self.mode)?;
if !constructed {
if tag == Tag::END_OF_VALUE {
if length != Length::Definite(0) {
return Err(self.content_err("non-empty end of value"))
}
// End-of-value: The top of the stack needs to be an
// indefinite value for it to be allowed. If it is, pop
// that value off the stack and continue. The limit is
// still that from the value one level above.
match stack.pop() {
Some(None) => { }
None => {
// We read end-of-value as the very first value.
// This can only happen if the outer value is
// an indefinite value. If so, change state and
// return.
if self.state == State::Indefinite {
self.state = State::Done;
return Ok(None)
}
else {
return Err(self.content_err(
"invalid nested values"
))
}
}
_ => {
return Err(self.content_err(
"invalid nested values"
))
}
}
}
else {
// Primitive value. Check for the length to be definite,
// check that the caller likes it, then try to read over
// it.
if let Length::Definite(len) = length {
if let Err(err) = op(tag, constructed, stack.len()) {
return Err(self.content_err(err));
}
self.source.advance(len);
}
else {
return Err(self.content_err(
"primitive value with indefinite length"
))
}
}
}
else if let Length::Definite(len) = length {
// Definite constructed value. First check if the caller
// likes it. Check that there is enough limit left for the
// value. If so, push the limit at the end of the value to
// the stack, update the limit to our length, and continue.
if let Err(err) = op(tag, constructed, stack.len()) {
return Err(self.content_err(err));
}
stack.push(Some(match self.source.limit() {
Some(limit) => {
match limit.checked_sub(len) {
Some(len) => Some(len),
None => {
return Err(self.content_err(
"invalid nested values"
));
}
}
}
None => None,
}));
self.source.set_limit(Some(len));
}
else {
// Indefinite constructed value. Simply push a `None` to the
// stack, if the caller likes it.
if let Err(err) = op(tag, constructed, stack.len()) {
return Err(self.content_err(err));
}
stack.push(None);
continue;
}
// Now we need to check if we have reached the end of a
// constructed value. This happens if the limit of the
// source reaches 0. Since the ends of several stacked values
// can align, we need to loop here. Also, if we run out of
// stack, we are done.
loop {
if stack.is_empty() {
return Ok(Some(()))
}
else if self.source.limit() == Some(0) {
match stack.pop() {
Some(Some(limit)) => {
self.source.set_limit(limit)
}
Some(None) => {
// We need a End-of-value, so running out of
// data is an error.
return Err(self.content_err("
missing futher values"
))
}
None => unreachable!(),
}
}
else {
break;
}
}
}
}
pub fn skip<F>(&mut self, op: F) -> Result<(), DecodeError<S::Error>>
where F: FnMut(Tag, bool, usize) -> Result<(), ContentError> {
self.mandatory(|cons| cons.skip_opt(op))
}
/// Skips over all remaining content.
pub fn skip_all(&mut self) -> Result<(), DecodeError<S::Error>> {
while let Some(()) = self.skip_one()? { }
Ok(())
}
/// Attempts to skip over the next value.
///
/// If there is a next value, returns `Ok(Some(()))`, if the end of value
/// has already been reached, returns `Ok(None)`.
pub fn skip_one(&mut self) -> Result<Option<()>, DecodeError<S::Error>> {
if self.is_exhausted() {
Ok(None)
}
else {
self.skip(|_, _, _| Ok(()))?;
Ok(Some(()))
}
}
}
/// # Processing Standard Values
///
/// These methods provide short-cuts for processing fundamental values in
/// their standard form. That is, the values use their regular tag and
/// encoding.
impl<'a, S: Source + 'a> Constructed<'a, S> {
/// Processes and returns a mandatory boolean value.
pub fn take_bool(&mut self) -> Result<bool, DecodeError<S::Error>> {
self.take_primitive_if(Tag::BOOLEAN, |prim| prim.to_bool())
}
/// Processes and returns an optional boolean value.
pub fn take_opt_bool(
&mut self,
) -> Result<Option<bool>, DecodeError<S::Error>> {
self.take_opt_primitive_if(Tag::BOOLEAN, |prim| prim.to_bool())
}
/// Processes a mandatory NULL value.
pub fn take_null(&mut self) -> Result<(), DecodeError<S::Error>> {
self.take_primitive_if(Tag::NULL, |_| Ok(())).map(|_| ())
}
/// Processes an optional NULL value.
pub fn take_opt_null(&mut self) -> Result<(), DecodeError<S::Error>> {
self.take_opt_primitive_if(Tag::NULL, |_| Ok(())).map(|_| ())
}
/// Processes a mandatory INTEGER value of the `u8` range.
///
/// If the integer value is less than 0 or greater than 255, a malformed
/// error is returned.
pub fn take_u8(&mut self) -> Result<u8, DecodeError<S::Error>> {
self.take_primitive_if(Tag::INTEGER, |prim| prim.to_u8())
}
/// Processes an optional INTEGER value of the `u8` range.
///
/// If the integer value is less than 0 or greater than 255, a malformed
/// error is returned.
pub fn take_opt_u8(
&mut self,
) -> Result<Option<u8>, DecodeError<S::Error>> {
self.take_opt_primitive_if(Tag::INTEGER, |prim| prim.to_u8())
}
/// Skips over a mandatory INTEGER if it has the given value.
///
/// If the next value is an integer but of a different value, returns
/// a malformed error.
pub fn skip_u8_if(
&mut self, expected: u8,
) -> Result<(), DecodeError<S::Error>> {
self.take_primitive_if(Tag::INTEGER, |prim| {
let got = prim.take_u8()?;
if got != expected {
Err(prim.content_err(ExpectedIntValue(expected)))
}
else {
Ok(())
}
})
}
/// Skips over an optional INTEGER if it has the given value.
///
/// If the next value is an integer but of a different value, returns
/// a malformed error.
pub fn skip_opt_u8_if(
&mut self, expected: u8,
) -> Result<(), DecodeError<S::Error>> {
self.take_opt_primitive_if(Tag::INTEGER, |prim| {
let got = prim.take_u8()?;
if got != expected {
Err(prim.content_err(ExpectedIntValue(expected)))
}
else {
Ok(())
}
}).map(|_| ())
}
/// Processes a mandatory INTEGER value of the `u16` range.
///
/// If the integer value is less than 0 or greater than 65535, a
/// malformed error is returned.
pub fn take_u16(&mut self) -> Result<u16, DecodeError<S::Error>> {
self.take_primitive_if(Tag::INTEGER, |prim| prim.to_u16())
}
/// Processes an optional INTEGER value of the `u16` range.
///
/// If the integer value is less than 0 or greater than 65535, a
/// malformed error is returned.
pub fn take_opt_u16(
&mut self,
) -> Result<Option<u16>, DecodeError<S::Error>> {
self.take_opt_primitive_if(Tag::INTEGER, |prim| prim.to_u16())
}
/// Processes a mandatory INTEGER value of the `u32` range.
///
/// If the integer value is less than 0 or greater than 2^32-1, a
/// malformed error is returned.
pub fn take_u32(&mut self) -> Result<u32, DecodeError<S::Error>> {
self.take_primitive_if(Tag::INTEGER, |prim| prim.to_u32())
}
/// Processes a optional INTEGER value of the `u32` range.
///
/// If the integer value is less than 0 or greater than 2^32-1, a
/// malformed error is returned.
pub fn take_opt_u32(
&mut self,
) -> Result<Option<u32>, DecodeError<S::Error>> {
self.take_opt_primitive_if(Tag::INTEGER, |prim| prim.to_u32())
}
/// Processes a mandatory INTEGER value of the `u64` range.
///
/// If the integer value is less than 0 or greater than 2^64-1, a
/// malformed error is returned.
pub fn take_u64(&mut self) -> Result<u64, DecodeError<S::Error>> {
self.take_primitive_if(Tag::INTEGER, |prim| prim.to_u64())
}
/// Processes a optional INTEGER value of the `u64` range.
///
/// If the integer value is less than 0 or greater than 2^64-1, a
/// malformed error is returned.
pub fn take_opt_u64(
&mut self,
) -> Result<Option<u64>, DecodeError<S::Error>> {
self.take_opt_primitive_if(Tag::INTEGER, |prim| prim.to_u64())
}
/// Processes a mandatory SEQUENCE value.
///
/// This is a shortcut for `self.take_constructed(Tag::SEQUENCE, op)`.
pub fn take_sequence<F, T>(
&mut self, op: F,
) -> Result<T, DecodeError<S::Error>>
where F: FnOnce(&mut Constructed<S>) -> Result<T, DecodeError<S::Error>> {
self.take_constructed_if(Tag::SEQUENCE, op)
}
/// Processes an optional SEQUENCE value.
///
/// This is a shortcut for
/// `self.take_opt_constructed(Tag::SEQUENCE, op)`.
pub fn take_opt_sequence<F, T>(
&mut self, op: F,
) -> Result<Option<T>, DecodeError<S::Error>>
where F: FnOnce(&mut Constructed<S>) -> Result<T, DecodeError<S::Error>> {
self.take_opt_constructed_if(Tag::SEQUENCE, op)
}
/// Processes a mandatory SET value.
///
/// This is a shortcut for `self.take_constructed(Tag::SET, op)`.
pub fn take_set<F, T>(
&mut self, op: F,
) -> Result<T, DecodeError<S::Error>>
where F: FnOnce(&mut Constructed<S>) -> Result<T, DecodeError<S::Error>> {
self.take_constructed_if(Tag::SET, op)
}
/// Processes an optional SET value.
///
/// This is a shortcut for `self.take_opt_constructed(Tag::SET, op)`.
pub fn take_opt_set<F, T>(
&mut self, op: F
) -> Result<Option<T>, DecodeError<S::Error>>
where F: FnOnce(&mut Constructed<S>) -> Result<T, DecodeError<S::Error>> {
self.take_opt_constructed_if(Tag::SET, op)
}
}
//------------ State ---------------------------------------------------------
/// The processing state of a constructed value.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
enum State {
/// We are reading until the end of the reader.
Definite,
/// Indefinite value, we haven’t reached the end yet.
Indefinite,
/// End of indefinite value reached.
Done,
/// Unbounded value: read as far as we get.
Unbounded,
}
//============ Error Types ===================================================
/// A value with a certain tag was expected.
#[derive(Clone, Copy, Debug)]
struct ExpectedTag(Tag);
impl fmt::Display for ExpectedTag {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "expected tag {}", self.0)
}
}
impl From<ExpectedTag> for ContentError {
fn from(err: ExpectedTag) -> Self {
ContentError::from_boxed(Box::new(err))
}
}
/// An integer with a certain value was expected.
#[derive(Clone, Copy, Debug)]
struct ExpectedIntValue<T>(T);
impl<T: fmt::Display> fmt::Display for ExpectedIntValue<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "expected integer value {}", self.0)
}
}
impl<T> From<ExpectedIntValue<T>> for ContentError
where T: fmt::Display + Send + Sync + 'static {
fn from(err: ExpectedIntValue<T>) -> Self {
ContentError::from_boxed(Box::new(err))
}
}
//============ Tests =========================================================
#[cfg(test)]
mod test {
use super::*;
#[test]
fn constructed_skip() {
// Two primitives.
Constructed::decode(
b"\x02\x01\x00\x02\x01\x00".into_source(), Mode::Ber, |cons| {
cons.skip(|_, _, _| Ok(())).unwrap();
cons.skip(|_, _, _| Ok(())).unwrap();
Ok(())
}
).unwrap();
// One definite constructed with two primitives, then one primitive
Constructed::decode(
b"\x30\x06\x02\x01\x00\x02\x01\x00\x02\x01\x00".into_source(),
Mode::Ber,
|cons| {
cons.skip(|_, _, _| Ok(())).unwrap();
cons.skip(|_, _, _| Ok(())).unwrap();
Ok(())
}
).unwrap();
// Two nested definite constructeds with two primitives, then one
// primitive.
Constructed::decode(
b"\x30\x08\
\x30\x06\
\x02\x01\x00\x02\x01\x00\
\x02\x01\x00".into_source(),
Mode::Ber,
|cons| {
cons.skip(|_, _, _| Ok(())).unwrap();
cons.skip(|_, _, _| Ok(())).unwrap();
Ok(())
}
).unwrap();
// One definite constructed with one indefinite with two primitives.
Constructed::decode(
b"\x30\x0A\
\x30\x80\
\x02\x01\x00\x02\x01\x00\
\0\0".into_source(),
Mode::Ber,
|cons| {
cons.skip(|_, _, _| Ok(())).unwrap();
Ok(())
}
).unwrap();
}
}