bc_envelope/base/envelope.rs
1#[cfg(not(feature = "multithreaded"))]
2use std::rc::Rc as RefCounted;
3#[cfg(feature = "multithreaded")]
4use std::sync::Arc as RefCounted;
5
6use anyhow::{Result, bail};
7#[cfg(feature = "compress")]
8use bc_components::Compressed;
9#[cfg(feature = "encrypt")]
10use bc_components::EncryptedMessage;
11use bc_components::{Digest, DigestProvider};
12use dcbor::prelude::*;
13
14#[cfg(feature = "known_value")]
15use crate::extension::KnownValue;
16use crate::{EnvelopeEncodable, Error, base::Assertion};
17
18/// A flexible container for structured data with built-in integrity
19/// verification.
20///
21/// Gordian Envelope is the primary data structure of this crate. It provides a
22/// way to encapsulate and organize data with cryptographic integrity, privacy
23/// features, and selective disclosure capabilities.
24///
25/// Key characteristics of envelopes:
26///
27/// - **Immutability**: Envelopes are immutable. Operations that appear to
28/// "modify" an envelope actually create a new envelope. This immutability is
29/// fundamental to maintaining the integrity of the envelope's digest tree.
30///
31/// - **Semantic Structure**: Envelopes can represent various semantic
32/// relationships through subjects, predicates, and objects (similar to RDF
33/// triples).
34///
35/// - **Digest Tree**: Each envelope maintains a Merkle-like digest tree that
36/// ensures the integrity of its contents and enables verification of
37/// individual parts.
38///
39/// - **Privacy Features**: Envelopes support selective disclosure through
40/// elision, encryption, and compression of specific parts, while maintaining
41/// the overall integrity of the structure.
42///
43/// - **Deterministic Representation**: Envelopes use deterministic CBOR
44/// encoding to ensure consistent serialization across platforms.
45///
46/// The Gordian Envelope specification is defined in an IETF Internet Draft, and
47/// this implementation closely follows that specification.
48///
49/// # Example
50///
51/// ```
52/// use bc_envelope::prelude::*;
53///
54/// // Create an envelope representing a person
55/// let person = Envelope::new("person")
56/// .add_assertion("name", "Alice")
57/// .add_assertion("age", 30)
58/// .add_assertion("email", "alice@example.com");
59///
60/// // Create a partially redacted version by eliding the email
61/// let redacted = person.elide_removing_target(
62/// &person.assertion_with_predicate("email").unwrap(),
63/// );
64///
65/// // The digest of both envelopes remains the same
66/// assert_eq!(person.digest(), redacted.digest());
67/// ```
68#[derive(Debug, Clone)]
69pub struct Envelope(RefCounted<EnvelopeCase>);
70
71impl Envelope {
72 /// Returns a reference to the underlying envelope case.
73 ///
74 /// The `EnvelopeCase` enum represents the specific structural variant of
75 /// this envelope. This method provides access to that underlying
76 /// variant for operations that need to differentiate between the
77 /// different envelope types.
78 ///
79 /// # Returns
80 ///
81 /// A reference to the `EnvelopeCase` that defines this envelope's
82 /// structure.
83 pub fn case(&self) -> &EnvelopeCase {
84 &self.0
85 }
86}
87
88/// Conversion from `EnvelopeCase` to `Envelope`.
89///
90/// This allows creating an envelope directly from an envelope case variant.
91impl From<EnvelopeCase> for Envelope {
92 fn from(case: EnvelopeCase) -> Self {
93 Self(RefCounted::new(case))
94 }
95}
96
97/// Conversion from `&Envelope` to `Envelope`.
98///
99/// This creates a clone of the envelope. Since envelopes use reference
100/// counting, this is a relatively inexpensive operation.
101impl From<&Envelope> for Envelope {
102 fn from(envelope: &Envelope) -> Self {
103 envelope.clone()
104 }
105}
106
107/// The core structural variants of a Gordian Envelope.
108///
109/// Each variant of this enum represents a different structural form that an
110/// envelope can take, as defined in the Gordian Envelope IETF Internet Draft.
111/// The different cases provide different capabilities and serve different
112/// purposes in the envelope ecosystem.
113///
114/// The `EnvelopeCase` is the internal representation of an envelope's
115/// structure. While each case has unique properties, they all maintain a digest
116/// that ensures the integrity of the envelope.
117///
118/// It is advised to use the other Envelop APIs for most uses. Please see the
119/// queries module for more information on how to interact with envelopes.
120#[derive(Debug)]
121pub enum EnvelopeCase {
122 /// Represents an envelope with a subject and one or more assertions.
123 ///
124 /// A node is the fundamental structural component for building complex data
125 /// structures with Gordian Envelope. It consists of a subject and a set of
126 /// assertions about that subject.
127 ///
128 /// The digest of a node is derived from the digests of its subject and all
129 /// assertions, ensuring that any change to the node or its components would
130 /// result in a different digest.
131 Node {
132 /// The subject of the node
133 subject: Envelope,
134 /// The assertions attached to the subject
135 assertions: Vec<Envelope>,
136 /// The digest of the node
137 digest: Digest,
138 },
139
140 /// Represents an envelope containing a primitive CBOR value.
141 ///
142 /// A leaf is the simplest form of envelope, containing a single CBOR value
143 /// such as a string, number, or boolean. Leaves are the terminal nodes in
144 /// the envelope structure.
145 ///
146 /// The digest of a leaf is derived directly from its CBOR representation.
147 Leaf {
148 /// The CBOR value contained in the leaf
149 cbor: CBOR,
150 /// The digest of the leaf
151 digest: Digest,
152 },
153
154 /// Represents an envelope that wraps another envelope.
155 ///
156 /// Wrapping provides a way to encapsulate an entire envelope as the subject
157 /// of another envelope, enabling hierarchical structures and metadata
158 /// attachment.
159 ///
160 /// The digest of a wrapped envelope is derived from the digest of the
161 /// envelope it wraps.
162 Wrapped {
163 /// The envelope being wrapped
164 envelope: Envelope,
165 /// The digest of the wrapped envelope
166 digest: Digest,
167 },
168
169 /// Represents a predicate-object assertion.
170 ///
171 /// An assertion is a statement about a subject, consisting of a predicate
172 /// (what is being asserted) and an object (the value of the assertion).
173 /// Assertions are attached to envelope subjects to form semantic
174 /// statements.
175 ///
176 /// For example, in the statement "Alice hasEmail alice@example.com":
177 /// - The subject is "Alice"
178 /// - The predicate is "hasEmail"
179 /// - The object is "alice@example.com"
180 Assertion(Assertion),
181
182 /// Represents an envelope that has been elided, leaving only its digest.
183 ///
184 /// Elision is a key privacy feature of Gordian Envelope, allowing parts of
185 /// an envelope to be removed while maintaining the integrity of the digest
186 /// tree. This enables selective disclosure of information.
187 Elided(Digest),
188
189 /// Represents a value from a namespace of unsigned integers used for
190 /// ontological concepts.
191 ///
192 /// Known Values are 64-bit unsigned integers used to represent stand-alone
193 /// ontological concepts like relationships (`isA`, `containedIn`),
194 /// classes (`Seed`, `PrivateKey`), or enumerated values (`MainNet`,
195 /// `OK`). They provide a compact, deterministic alternative to URIs for
196 /// representing common predicates and values.
197 ///
198 /// Using Known Values instead of strings for common predicates offers
199 /// several advantages:
200 /// - More compact representation (integers vs. long strings/URIs)
201 /// - Standardized semantics across implementations
202 /// - Deterministic encoding for cryptographic operations
203 /// - Resistance to manipulation attacks that target string representations
204 ///
205 /// Known Values are displayed with single quotes, e.g., `'isA'` or by their
206 /// numeric value like `'1'` (when no name is assigned).
207 ///
208 /// This variant is only available when the `known_value` feature is
209 /// enabled.
210 #[cfg(feature = "known_value")]
211 KnownValue {
212 /// The Known Value instance containing the integer value and optional
213 /// name
214 value: KnownValue,
215 /// The digest of the known value
216 digest: Digest,
217 },
218
219 /// Represents an envelope that has been encrypted.
220 ///
221 /// Encryption is a privacy feature that allows parts of an envelope to be
222 /// encrypted while maintaining the integrity of the digest tree. The
223 /// encrypted content can only be accessed by those with the appropriate
224 /// key.
225 ///
226 /// This variant is only available when the `encrypt` feature is enabled.
227 #[cfg(feature = "encrypt")]
228 Encrypted(EncryptedMessage),
229
230 /// Represents an envelope that has been compressed.
231 ///
232 /// Compression reduces the size of an envelope while maintaining its full
233 /// content and digest integrity. Unlike elision or encryption, compression
234 /// doesn't restrict access to the content, but simply makes it more
235 /// compact.
236 ///
237 /// This variant is only available when the `compress` feature is enabled.
238 #[cfg(feature = "compress")]
239 Compressed(Compressed),
240}
241
242/// Support for basic envelope creation.
243impl Envelope {
244 /// Creates an envelope with a `subject`, which
245 /// can be any instance that implements ``EnvelopeEncodable``.
246 pub fn new(subject: impl EnvelopeEncodable) -> Self {
247 subject.into_envelope()
248 }
249
250 /// Creates an envelope with a `subject`, which
251 /// can be any instance that implements ``EnvelopeEncodable``.
252 ///
253 /// If `subject` is `None`, returns a null envelope.
254 pub fn new_or_null(subject: Option<impl EnvelopeEncodable>) -> Self {
255 subject.map_or_else(Self::null, Self::new)
256 }
257
258 /// Creates an envelope with a `subject`, which
259 /// can be any instance that implements ``EnvelopeEncodable``.
260 ///
261 /// If `subject` is `None`, returns `None`.
262 pub fn new_or_none(
263 subject: Option<impl EnvelopeEncodable>,
264 ) -> Option<Self> {
265 subject.map(Self::new)
266 }
267
268 /// Creates an assertion envelope with a `predicate` and `object`,
269 /// each of which can be any instance that implements ``EnvelopeEncodable``.
270 pub fn new_assertion(
271 predicate: impl EnvelopeEncodable,
272 object: impl EnvelopeEncodable,
273 ) -> Self {
274 Self::new_with_assertion(Assertion::new(predicate, object))
275 }
276}
277
278/// Internal constructors
279impl Envelope {
280 pub(crate) fn new_with_unchecked_assertions(
281 subject: Self,
282 unchecked_assertions: Vec<Self>,
283 ) -> Self {
284 assert!(!unchecked_assertions.is_empty());
285 let mut sorted_assertions = unchecked_assertions;
286 sorted_assertions.sort_by(|a, b| a.digest().cmp(&b.digest()));
287 let mut digests = vec![subject.digest().into_owned()];
288 digests
289 .extend(sorted_assertions.iter().map(|a| a.digest().into_owned()));
290 let digest = Digest::from_digests(&digests);
291 (EnvelopeCase::Node { subject, assertions: sorted_assertions, digest })
292 .into()
293 }
294
295 pub(crate) fn new_with_assertions(
296 subject: Self,
297 assertions: Vec<Self>,
298 ) -> Result<Self> {
299 if !assertions
300 .iter()
301 .all(|a| (a.is_subject_assertion() || a.is_subject_obscured()))
302 {
303 bail!(Error::InvalidFormat);
304 }
305 Ok(Self::new_with_unchecked_assertions(subject, assertions))
306 }
307
308 pub(crate) fn new_with_assertion(assertion: Assertion) -> Self {
309 EnvelopeCase::Assertion(assertion).into()
310 }
311
312 #[cfg(feature = "known_value")]
313 pub(crate) fn new_with_known_value(value: KnownValue) -> Self {
314 let digest = value.digest().into_owned();
315 (EnvelopeCase::KnownValue { value, digest }).into()
316 }
317
318 #[cfg(feature = "encrypt")]
319 pub(crate) fn new_with_encrypted(
320 encrypted_message: EncryptedMessage,
321 ) -> Result<Self> {
322 if !encrypted_message.has_digest() {
323 bail!(Error::MissingDigest);
324 }
325 Ok(EnvelopeCase::Encrypted(encrypted_message).into())
326 }
327
328 #[cfg(feature = "compress")]
329 pub(crate) fn new_with_compressed(compressed: Compressed) -> Result<Self> {
330 if !compressed.has_digest() {
331 bail!(Error::MissingDigest);
332 }
333 Ok(EnvelopeCase::Compressed(compressed).into())
334 }
335
336 pub(crate) fn new_elided(digest: Digest) -> Self {
337 EnvelopeCase::Elided(digest).into()
338 }
339
340 pub(crate) fn new_leaf(value: impl Into<CBOR>) -> Self {
341 let cbor: CBOR = value.into();
342 let digest = Digest::from_image(cbor.to_cbor_data());
343 (EnvelopeCase::Leaf { cbor, digest }).into()
344 }
345
346 pub(crate) fn new_wrapped(envelope: Self) -> Self {
347 let digest = Digest::from_digests(&[envelope.digest().into_owned()]);
348 (EnvelopeCase::Wrapped { envelope, digest }).into()
349 }
350}
351
352impl AsRef<Envelope> for Envelope {
353 fn as_ref(&self) -> &Envelope {
354 self
355 }
356}
357
358#[cfg(test)]
359mod tests {
360 #[cfg(feature = "compress")]
361 use bc_components::Compressed;
362 use bc_components::DigestProvider;
363
364 #[cfg(feature = "known_value")]
365 use crate::extension::KnownValue;
366 use crate::{Assertion, Envelope};
367
368 #[test]
369 fn test_any_envelope() {
370 let e1 = Envelope::new_leaf("Hello");
371 let e2 = Envelope::new("Hello");
372 assert_eq!(e1.format(), e2.format());
373 assert_eq!(e1.digest(), e2.digest());
374 }
375
376 #[cfg(feature = "known_value")]
377 #[test]
378 fn test_any_known_value() {
379 let known_value = KnownValue::new(100);
380 let e1 = Envelope::new_with_known_value(known_value.clone());
381 let e2 = Envelope::new(known_value);
382 assert_eq!(e1.format(), e2.format());
383 assert_eq!(e1.digest(), e2.digest());
384 }
385
386 #[test]
387 fn test_any_assertion() {
388 let assertion = Assertion::new("knows", "Bob");
389 let e1 = Envelope::new_with_assertion(assertion.clone());
390 let e2 = Envelope::new(assertion);
391 assert_eq!(e1.format(), e2.format());
392 assert_eq!(e1.digest(), e2.digest());
393 }
394
395 #[test]
396 fn test_any_encrypted() {
397 //todo!()
398 }
399
400 #[cfg(feature = "compress")]
401 #[test]
402 fn test_any_compressed() {
403 let data = "Hello".as_bytes();
404 let digest = data.digest().into_owned();
405 let compressed = Compressed::from_uncompressed_data(data, Some(digest));
406 let e1 = Envelope::new_with_compressed(compressed.clone()).unwrap();
407 let e2 = Envelope::try_from(compressed).unwrap();
408 assert_eq!(e1.format(), e2.format());
409 assert_eq!(e1.digest(), e2.digest());
410 }
411
412 #[test]
413 fn test_any_cbor_encodable() {
414 let e1 = Envelope::new_leaf(1);
415 let e2 = Envelope::new(1);
416 assert_eq!(e1.format(), e2.format());
417 assert_eq!(e1.digest(), e2.digest());
418 }
419}