1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
#![doc = include_str!("../README.md")]
#![doc = include_str!("example.md")]
use futures_core::future::BoxFuture;
use std::cmp::min;
use std::collections::VecDeque;
use std::fmt;
use std::future::Future;
use std::iter::Peekable;
use std::pin::Pin;
use std::sync::Arc;
use std::sync::Mutex;
use std::sync::MutexGuard;
use std::task::Context;
use std::task::Poll;
use std::task::Waker;
const UNBOUNDED_CAPACITY: usize = usize::MAX;
// TODO: we could replace Arc with Box and rely on atomic tx_count and
// rx_count.
#[derive(Debug)]
struct State<T> {
queue: VecDeque<T>,
capacity: usize,
tx_count: usize,
rx_count: usize,
tx_wakers: Vec<Waker>,
rx_wakers: Vec<Waker>,
}
fn wake_all_tx<T>(mut state: MutexGuard<State<T>>) {
let wakers = std::mem::take(&mut state.tx_wakers);
drop(state);
for waker in wakers {
waker.wake();
}
}
fn wake_all_rx<T>(mut state: MutexGuard<State<T>>) {
let wakers = std::mem::take(&mut state.rx_wakers);
drop(state);
for waker in wakers {
waker.wake();
}
}
impl<T> State<T> {
fn target_capacity(&self) -> usize {
// TODO: We could offer an option to use queue.capacity
// instead.
self.capacity
}
}
// Sender
/// The sending half of an unbounded channel.
#[derive(Debug)]
pub struct Sender<T> {
state: Arc<Mutex<State<T>>>,
}
impl<T> Clone for Sender<T> {
fn clone(&self) -> Self {
self.state.lock().unwrap().tx_count += 1;
Sender {
state: self.state.clone(),
}
}
}
impl<T> Drop for Sender<T> {
fn drop(&mut self) {
let mut state = self.state.lock().unwrap();
assert!(state.tx_count >= 1);
state.tx_count -= 1;
if state.tx_count == 0 {
wake_all_rx(state);
}
}
}
/// An error returned from [Sender::send] when all [Receiver]s are
/// dropped.
///
/// The unsent value is returned.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub struct SendError<T>(pub T);
impl<T> fmt::Display for SendError<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "failed to send value on channel")
}
}
impl<T: fmt::Debug> std::error::Error for SendError<T> {}
impl<T> Sender<T> {
/// Send a single value.
///
/// Returns [SendError] if all receivers are dropped.
pub fn send(&self, value: T) -> Result<(), SendError<T>> {
let mut state = self.state.lock().unwrap();
if state.rx_count == 0 {
assert!(state.queue.is_empty());
return Err(SendError(value));
}
state.queue.push_back(value);
// There is no guarantee that the highest-priority waker will
// actually call poll() again. Therefore, the best we can do
// is wake everyone.
wake_all_rx(state);
Ok(())
}
/// Send multiple values.
///
/// If all receivers are dropped, the values are returned in
/// [SendError] untouched. Either the entire batch is sent or none
/// of it is sent.
pub fn send_iter<I>(&self, values: I) -> Result<(), SendError<I>>
where
I: IntoIterator<Item = T>,
{
let mut state = self.state.lock().unwrap();
if state.rx_count == 0 {
assert!(state.queue.is_empty());
return Err(SendError(values));
}
state.queue.extend(values);
// There is no guarantee that the highest-priority waker will
// actually call poll() again. Therefore, the best we can do
// is wake everyone.
wake_all_rx(state);
Ok(())
}
/// Drain a [Vec] into the channel without deallocating it.
///
/// This is a convenience method for allocation-free batched
/// sends. The `values` vector is drained, and then returned with
/// the same capacity it had.
pub fn send_vec(&self, mut values: Vec<T>) -> Result<Vec<T>, SendError<Vec<T>>> {
let mut state = self.state.lock().unwrap();
if state.rx_count == 0 {
assert!(state.queue.is_empty());
return Err(SendError(values));
}
state.queue.extend(values.drain(..));
// There is no guarantee that the highest-priority waker will
// actually call poll() again. Therefore, the best we can do
// is wake everyone.
wake_all_rx(state);
Ok(values)
}
/// Converts this [Sender] into a [BatchSender] with the specified
/// capacity.
///
/// [BatchSender] manages a single allocation containing
/// `capacity` elements and automatically sends batches as it
/// fills.
pub fn batch(self, capacity: usize) -> BatchSender<T> {
BatchSender {
sender: self,
capacity,
buffer: Vec::with_capacity(capacity),
}
}
}
// BatchSender
/// Automatically sends values on the channel in batches.
///
/// Any unsent values are sent upon drop.
#[derive(Debug)]
pub struct BatchSender<T> {
sender: Sender<T>,
capacity: usize,
buffer: Vec<T>,
}
/// Sends remaining values.
impl<T> Drop for BatchSender<T> {
fn drop(&mut self) {
if self.buffer.is_empty() {
return;
}
// If receivers dropped, there's nothing we can do with any
// held values.
_ = self.sender.send_vec(std::mem::take(&mut self.buffer));
}
}
impl<T> BatchSender<T> {
/// Buffers a single value to be sent on the channel.
///
/// Sends the batch if the buffer is full.
pub fn send(&mut self, value: T) -> Result<(), SendError<()>> {
self.buffer.push(value);
// TODO: consider using the full capacity if Vec overallocated.
if self.buffer.len() == self.capacity {
self.drain()
} else {
Ok(())
}
}
/// Buffers multiple values, sending batches as the internal
/// buffer reaches capacity.
pub fn send_iter<I: IntoIterator<Item = T>>(&mut self, values: I) -> Result<(), SendError<()>> {
// TODO: We could return the remainder of I under cancellation.
for value in values.into_iter() {
self.send(value)?;
}
Ok(())
}
/// Sends any buffered values, clearing the current batch.
pub fn drain(&mut self) -> Result<(), SendError<()>> {
// TODO: send_iter
match self.sender.send_vec(std::mem::take(&mut self.buffer)) {
Ok(drained_vec) => {
self.buffer = drained_vec;
Ok(())
}
Err(_) => Err(SendError(())),
}
}
}
// BoundedSender
/// The sending half of a bounded channel.
#[derive(Debug)]
pub struct BoundedSender<T> {
state: Arc<Mutex<State<T>>>,
}
impl<T> Drop for BoundedSender<T> {
fn drop(&mut self) {
let mut state = self.state.lock().unwrap();
assert!(state.tx_count >= 1);
state.tx_count -= 1;
if state.tx_count == 0 {
wake_all_rx(state);
}
}
}
impl<T: 'static> BoundedSender<T> {
/// Send a single value.
///
/// Returns [SendError] if all receivers are dropped.
pub fn send(&self, value: T) -> impl Future<Output = Result<(), SendError<T>>> + '_ {
Send {
sender: self,
value: Some(value),
}
}
/// Send multiple values.
///
/// If all receivers are dropped, the values are returned in
/// [SendError] untouched. Either the entire batch is sent or none
/// of it is sent.
pub fn send_iter<'a, I>(
&'a self,
values: I,
) -> impl Future<Output = Result<(), SendError<()>>> + 'a
where
I: IntoIterator<Item = T> + 'a,
{
SendIter {
sender: self,
values: Some(values.into_iter().peekable()),
}
}
/// Automatically accumulate sends into a buffer of size `batch`
/// and send when full.
///
/// The callback's future must be boxed to work around [type system
/// limitations in Rust](https://smallcultfollowing.com/babysteps/blog/2023/03/29/thoughts-on-async-closures/).
///
/// TODO: add a feature that gates this only dependency on `futures` crate.
pub async fn autobatch<F, R>(self, capacity: usize, f: F) -> Result<R, SendError<()>>
where
for<'a> F:
(FnOnce(&'a mut BoundedBatchSender<T>) -> BoxFuture<'a, Result<R, SendError<()>>>),
{
let mut tx = BoundedBatchSender {
sender: self,
capacity,
buffer: Vec::with_capacity(capacity),
};
let r = f(&mut tx).await?;
tx.drain().await?;
Ok(r)
}
}
#[must_use = "futures do nothing unless you `.await` or poll them"]
struct Send<'a, T> {
sender: &'a BoundedSender<T>,
value: Option<T>,
}
impl<'a, T> Future for Send<'a, T> {
type Output = Result<(), SendError<T>>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let mut state = self.sender.state.lock().unwrap();
if state.rx_count == 0 {
return Poll::Ready(Err(SendError(self.as_mut().value.take().unwrap())));
}
if state.queue.len() < state.target_capacity() {
state.queue.push_back(self.as_mut().value.take().unwrap());
wake_all_rx(state);
Poll::Ready(Ok(()))
} else {
state.tx_wakers.push(cx.waker().clone());
Poll::Pending
}
}
}
impl<'a, T> Unpin for Send<'a, T> {}
#[must_use = "futures do nothing unless you `.await` or poll them"]
struct SendIter<'a, T, I: Iterator<Item = T>> {
sender: &'a BoundedSender<T>,
values: Option<Peekable<I>>,
}
impl<'a, T, I: Iterator<Item = T>> Future for SendIter<'a, T, I> {
type Output = Result<(), SendError<()>>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let mut state = self.sender.state.lock().unwrap();
// There is an awkward set of constraints here.
// 1. To check whether an iterator contains an item, one must be popped.
// 2. If the receivers are cancelled, we'd like to return the iterator whole.
// 3. If we don't know whether there are any remaining items, we must block
// if the queue is at capacity.
// We relax constraint #2 because #3 is preferable.
// TODO: We could return Peekable<I> instead.
let pi = self.values.as_mut().unwrap();
loop {
if pi.peek().is_none() {
// TODO: We could optimize the case that send_iter was called with an empty
// iterator, but that's unlikely. We probably sent a message in this loop.
wake_all_rx(state);
return Poll::Ready(Ok(()));
} else if state.rx_count == 0 {
// TODO: add a test for when receiver is dropped after iterator is drained
return Poll::Ready(Err(SendError(())));
} else if state.queue.len() < state.target_capacity() {
state.queue.push_back(pi.next().unwrap());
} else {
state.tx_wakers.push(cx.waker().clone());
return Poll::Pending;
}
}
}
}
impl<'a, T, I: Iterator<Item = T>> Unpin for SendIter<'a, T, I> {}
// BoundedBatchSender
pub struct BoundedBatchSender<T: 'static> {
sender: BoundedSender<T>,
capacity: usize,
buffer: Vec<T>,
}
impl<T> BoundedBatchSender<T> {
pub async fn send(&mut self, value: T) -> Result<(), SendError<()>> {
self.buffer.push(value);
if self.buffer.len() == self.capacity {
self.drain().await?;
}
Ok(())
}
async fn drain(&mut self) -> Result<(), SendError<()>> {
self.sender.send_iter(self.buffer.drain(..)).await?;
assert!(self.buffer.is_empty());
Ok(())
}
}
// Receiver
/// The receiving half of a channel.
#[derive(Debug)]
pub struct Receiver<T> {
state: Arc<Mutex<State<T>>>,
}
impl<T> Clone for Receiver<T> {
fn clone(&self) -> Self {
self.state.lock().unwrap().rx_count += 1;
Receiver {
state: self.state.clone(),
}
}
}
impl<T> Drop for Receiver<T> {
fn drop(&mut self) {
let mut state = self.state.lock().unwrap();
assert!(state.rx_count >= 1);
state.rx_count -= 1;
if state.rx_count == 0 {
state.queue.clear();
wake_all_tx(state);
}
}
}
#[must_use = "futures do nothing unless you `.await` or poll them"]
struct Recv<'a, T> {
receiver: &'a Receiver<T>,
}
impl<'a, T> Unpin for Recv<'a, T> {}
impl<'a, T> Future for Recv<'a, T> {
type Output = Option<T>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let mut state = self.receiver.state.lock().unwrap();
match state.queue.pop_front() {
Some(value) => {
wake_all_tx(state);
Poll::Ready(Some(value))
}
None => {
if state.tx_count == 0 {
Poll::Ready(None)
} else {
state.rx_wakers.push(cx.waker().clone());
Poll::Pending
}
}
}
}
}
#[must_use = "futures do nothing unless you .await or poll them"]
struct RecvBatch<'a, T> {
receiver: &'a Receiver<T>,
element_limit: usize,
}
impl<'a, T> Unpin for RecvBatch<'a, T> {}
impl<'a, T> Future for RecvBatch<'a, T> {
type Output = Vec<T>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let mut state = self.receiver.state.lock().unwrap();
let q = &mut state.queue;
let q_len = q.len();
if q_len == 0 {
if state.tx_count == 0 {
return Poll::Ready(Vec::new());
} else {
state.rx_wakers.push(cx.waker().clone());
return Poll::Pending;
}
}
let capacity = min(q_len, self.element_limit);
let v = Vec::from_iter(q.drain(..capacity));
wake_all_tx(state);
Poll::Ready(v)
}
}
#[must_use = "futures do nothing unless you .await or poll them"]
struct RecvVec<'a, T> {
receiver: &'a Receiver<T>,
element_limit: usize,
vec: &'a mut Vec<T>,
}
impl<'a, T> Unpin for RecvVec<'a, T> {}
impl<'a, T> Future for RecvVec<'a, T> {
type Output = ();
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let mut state = self.receiver.state.lock().unwrap();
let q = &mut state.queue;
let q_len = q.len();
if q_len == 0 {
if state.tx_count == 0 {
assert!(self.vec.is_empty());
return Poll::Ready(());
} else {
state.rx_wakers.push(cx.waker().clone());
return Poll::Pending;
}
}
let capacity = min(q_len, self.element_limit);
self.vec.extend(q.drain(..capacity));
Poll::Ready(())
}
}
impl<T> Receiver<T> {
/// Wait for a single value from the channel.
///
/// Returns [None] if all [Sender]s are dropped.
pub fn recv(&self) -> impl Future<Output = Option<T>> + '_ {
Recv { receiver: self }
}
// TODO: try_recv
/// Wait for up to `element_limit` values from the channel.
///
/// Up to `element_limit` values are returned if they're already
/// available. Otherwise, waits for any values to be available.
///
/// Returns an empty [Vec] if all [Sender]s are dropped.
pub fn recv_batch(&self, element_limit: usize) -> impl Future<Output = Vec<T>> + '_ {
RecvBatch {
receiver: self,
element_limit,
}
}
// TODO: try_recv_batch
/// Wait for up to `element_limit` values from the channel and
/// store them in `vec`.
///
/// `vec` should be empty when passed in. Nevertheless, `recv_vec`
/// will clear it before adding values. The intent of `recv_vec`
/// is that batches can be repeatedly read by workers without new
/// allocations.
///
/// It's not required, but `vec`'s capacity should be greater than
/// or equal to element_limit to avoid reallocation.
pub fn recv_vec<'a>(
&'a self,
element_limit: usize,
vec: &'a mut Vec<T>,
) -> impl Future<Output = ()> + 'a {
vec.clear();
RecvVec {
receiver: self,
element_limit,
vec,
}
}
// TODO: try_recv_vec
}
// Constructors
/// Allocates a new, bounded channel and returns the sender, receiver
/// pair.
///
/// Rust async is polling, so synchronous channels are not supported.
/// Therefore, a capacity of 0 is rounded up to 1.
pub fn bounded<T>(capacity: usize) -> (BoundedSender<T>, Receiver<T>) {
let capacity = capacity.max(1);
let state = Arc::new(Mutex::new(State {
queue: VecDeque::new(),
capacity,
tx_count: 1,
rx_count: 1,
tx_wakers: Vec::new(),
rx_wakers: Vec::new(),
}));
(
BoundedSender {
state: state.clone(),
},
Receiver { state },
)
}
/// Allocates a new, unbounded channel and returns the sender,
/// receiver pair.
pub fn unbounded<T>() -> (Sender<T>, Receiver<T>) {
let state = Arc::new(Mutex::new(State {
queue: VecDeque::new(),
capacity: UNBOUNDED_CAPACITY,
tx_count: 1,
rx_count: 1,
tx_wakers: Vec::new(),
rx_wakers: Vec::new(),
}));
(
Sender {
state: state.clone(),
},
Receiver { state },
)
}