base_d/lib.rs
1//! # base-d
2//!
3//! A universal, multi-dictionary encoding library for Rust.
4//!
5//! Encode binary data using numerous dictionaries including RFC standards, ancient scripts,
6//! emoji, playing cards, and more. Supports three encoding modes: radix (true base
7//! conversion), RFC 4648 chunked encoding, and direct byte-range mapping.
8//!
9//! ## Quick Start
10//!
11//! ```
12//! use base_d::{DictionaryRegistry, Dictionary, encode, decode};
13//!
14//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
15//! // Load built-in dictionaries
16//! let config = DictionaryRegistry::load_default()?;
17//! let base64_config = config.get_dictionary("base64").unwrap();
18//!
19//! // Create dictionary
20//! let chars: Vec<char> = base64_config.chars.chars().collect();
21//! let padding = base64_config.padding.as_ref().and_then(|s| s.chars().next());
22//! let mut builder = Dictionary::builder()
23//! .chars(chars)
24//! .mode(base64_config.effective_mode());
25//! if let Some(p) = padding {
26//! builder = builder.padding(p);
27//! }
28//! let dictionary = builder.build()?;
29//!
30//! // Encode and decode
31//! let data = b"Hello, World!";
32//! let encoded = encode(data, &dictionary);
33//! let decoded = decode(&encoded, &dictionary)?;
34//! assert_eq!(data, &decoded[..]);
35//! # Ok(())
36//! # }
37//! ```
38//!
39//! ## Features
40//!
41//! - **33 Built-in Dictionaries**: RFC standards, emoji, ancient scripts, and more
42//! - **3 Encoding Modes**: Radix, chunked (RFC-compliant), byte-range
43//! - **Streaming Support**: Memory-efficient processing for large files
44//! - **Custom Dictionaries**: Define your own via TOML configuration
45//! - **User Configuration**: Load dictionaries from `~/.config/base-d/dictionaries.toml`
46//! - **SIMD Acceleration**: AVX2/SSSE3 on x86_64, NEON on aarch64 (enabled by default)
47//!
48//! ## Cargo Features
49//!
50//! - `simd` (default): Enable SIMD acceleration for encoding/decoding.
51//! Disable with `--no-default-features` for scalar-only builds.
52//!
53//! ## Encoding Modes
54//!
55//! ### Radix Base Conversion
56//!
57//! True base conversion treating data as a large number. Works with any dictionary size.
58//!
59//! ```
60//! use base_d::{Dictionary, EncodingMode, encode};
61//!
62//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
63//! let chars: Vec<char> = "😀😁😂🤣😃😄😅😆".chars().collect();
64//! let dictionary = Dictionary::builder()
65//! .chars(chars)
66//! .mode(EncodingMode::Radix)
67//! .build()?;
68//!
69//! let encoded = encode(b"Hi", &dictionary);
70//! # Ok(())
71//! # }
72//! ```
73//!
74//! ### Chunked Mode (RFC 4648)
75//!
76//! Fixed-size bit groups, compatible with standard base64/base32.
77//!
78//! ```
79//! use base_d::{Dictionary, EncodingMode, encode};
80//!
81//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
82//! let chars: Vec<char> = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"
83//! .chars().collect();
84//! let dictionary = Dictionary::builder()
85//! .chars(chars)
86//! .mode(EncodingMode::Chunked)
87//! .padding('=')
88//! .build()?;
89//!
90//! let encoded = encode(b"Hello", &dictionary);
91//! assert_eq!(encoded, "SGVsbG8=");
92//! # Ok(())
93//! # }
94//! ```
95//!
96//! ### Byte Range Mode
97//!
98//! Direct 1:1 byte-to-emoji mapping. Zero encoding overhead.
99//!
100//! ```
101//! use base_d::{Dictionary, EncodingMode, encode};
102//!
103//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
104//! let dictionary = Dictionary::builder()
105//! .mode(EncodingMode::ByteRange)
106//! .start_codepoint(127991) // U+1F3F7
107//! .build()?;
108//!
109//! let data = b"Hi";
110//! let encoded = encode(data, &dictionary);
111//! assert_eq!(encoded.chars().count(), 2); // 1:1 mapping
112//! # Ok(())
113//! # }
114//! ```
115//!
116//! ## Streaming
117//!
118//! For large files, use streaming to avoid loading entire file into memory:
119//!
120//! ```no_run
121//! use base_d::{DictionaryRegistry, StreamingEncoder};
122//! use std::fs::File;
123//!
124//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
125//! let config = DictionaryRegistry::load_default()?;
126//! let dictionary_config = config.get_dictionary("base64").unwrap();
127//!
128//! // ... create dictionary from config
129//! # let chars: Vec<char> = dictionary_config.chars.chars().collect();
130//! # let padding = dictionary_config.padding.as_ref().and_then(|s| s.chars().next());
131//! # let mut builder = base_d::Dictionary::builder().chars(chars).mode(dictionary_config.effective_mode());
132//! # if let Some(p) = padding { builder = builder.padding(p); }
133//! # let dictionary = builder.build()?;
134//!
135//! let mut input = File::open("large_file.bin")?;
136//! let output = File::create("encoded.txt")?;
137//!
138//! let mut encoder = StreamingEncoder::new(&dictionary, output);
139//! encoder.encode(&mut input)?;
140//! # Ok(())
141//! # }
142//! ```
143
144mod core;
145mod encoders;
146mod features;
147
148#[cfg(feature = "simd")]
149mod simd;
150
151pub mod bench;
152pub mod convenience;
153pub mod prelude;
154
155pub use convenience::{
156 CompressEncodeResult, HashEncodeResult, compress_encode, compress_encode_with, hash_encode,
157 hash_encode_with,
158};
159pub use core::config::{
160 CompressionConfig, DictionaryConfig, DictionaryRegistry, EncodingMode, Settings,
161};
162pub use core::dictionary::{Dictionary, DictionaryBuilder};
163pub use encoders::algorithms::{DecodeError, DictionaryNotFoundError, find_closest_dictionary};
164pub use encoders::streaming::{StreamingDecoder, StreamingEncoder};
165
166// Expose schema encoding functions for CLI
167pub use encoders::algorithms::schema::{SchemaCompressionAlgo, decode_schema, encode_schema};
168
169/// Schema encoding types and traits for building custom frontends
170///
171/// This module provides the intermediate representation (IR) layer for schema encoding,
172/// allowing library users to implement custom parsers (YAML, CSV, TOML, etc.) and
173/// serializers that leverage the binary encoding backend.
174///
175/// # Architecture
176///
177/// The schema encoding pipeline has three layers:
178///
179/// 1. **Input layer**: Parse custom formats into IR
180/// - Implement `InputParser` trait
181/// - Reference: `JsonParser`
182///
183/// 2. **Binary layer**: Pack/unpack IR to/from binary
184/// - `pack()` - IR to binary bytes
185/// - `unpack()` - Binary bytes to IR
186/// - `encode_framed()` - Binary to display96 with delimiters
187/// - `decode_framed()` - Display96 to binary
188///
189/// 3. **Output layer**: Serialize IR to custom formats
190/// - Implement `OutputSerializer` trait
191/// - Reference: `JsonSerializer`
192///
193/// # Example: Custom CSV Parser
194///
195/// ```ignore
196/// use base_d::schema::{
197/// InputParser, IntermediateRepresentation, SchemaHeader, FieldDef,
198/// FieldType, SchemaValue, SchemaError, pack, encode_framed,
199/// };
200///
201/// struct CsvParser;
202///
203/// impl InputParser for CsvParser {
204/// type Error = SchemaError;
205///
206/// fn parse(input: &str) -> Result<IntermediateRepresentation, Self::Error> {
207/// // Parse CSV headers
208/// let lines: Vec<&str> = input.lines().collect();
209/// let headers: Vec<&str> = lines[0].split(',').collect();
210///
211/// // Infer types and build fields
212/// let fields: Vec<FieldDef> = headers.iter()
213/// .map(|h| FieldDef::new(h.to_string(), FieldType::String))
214/// .collect();
215///
216/// // Parse rows
217/// let row_count = lines.len() - 1;
218/// let mut values = Vec::new();
219/// for line in &lines[1..] {
220/// for cell in line.split(',') {
221/// values.push(SchemaValue::String(cell.to_string()));
222/// }
223/// }
224///
225/// let header = SchemaHeader::new(row_count, fields);
226/// IntermediateRepresentation::new(header, values)
227/// }
228/// }
229///
230/// // Encode CSV to schema format
231/// let csv = "name,age\nalice,30\nbob,25";
232/// let ir = CsvParser::parse(csv)?;
233/// let binary = pack(&ir);
234/// let encoded = encode_framed(&binary);
235/// ```
236///
237/// # IR Structure
238///
239/// The `IntermediateRepresentation` consists of:
240///
241/// * **Header**: Schema metadata
242/// - Field definitions (name + type)
243/// - Row count
244/// - Optional root key
245/// - Optional null bitmap
246///
247/// * **Values**: Flat array in row-major order
248/// - `[row0_field0, row0_field1, row1_field0, row1_field1, ...]`
249///
250/// # Type System
251///
252/// Supported field types:
253///
254/// * `U64` - Unsigned 64-bit integer
255/// * `I64` - Signed 64-bit integer
256/// * `F64` - 64-bit floating point
257/// * `String` - UTF-8 string
258/// * `Bool` - Boolean
259/// * `Null` - Null value
260/// * `Array(T)` - Homogeneous array of type T
261/// * `Any` - Mixed-type values
262///
263/// # Compression
264///
265/// Optional compression algorithms:
266///
267/// * `SchemaCompressionAlgo::Brotli` - Best ratio
268/// * `SchemaCompressionAlgo::Lz4` - Fastest
269/// * `SchemaCompressionAlgo::Zstd` - Balanced
270///
271/// # See Also
272///
273/// * [SCHEMA.md](../SCHEMA.md) - Full format specification
274/// * `encode_schema()` / `decode_schema()` - High-level JSON functions
275pub mod schema {
276 pub use crate::encoders::algorithms::schema::{
277 // IR types
278 FieldDef,
279 FieldType,
280 // Traits
281 InputParser,
282 IntermediateRepresentation,
283 // Reference implementations
284 JsonParser,
285 JsonSerializer,
286 OutputSerializer,
287 // Compression
288 SchemaCompressionAlgo,
289 // Errors
290 SchemaError,
291 SchemaHeader,
292 SchemaValue,
293 // Binary layer
294 decode_framed,
295 // High-level API
296 decode_schema,
297 encode_framed,
298 encode_schema,
299 pack,
300 unpack,
301 };
302}
303pub use features::{
304 CompressionAlgorithm, DictionaryDetector, DictionaryMatch, HashAlgorithm, XxHashConfig,
305 compress, decompress, detect_dictionary, hash, hash_with_config,
306};
307
308/// Encodes binary data using the specified dictionary.
309///
310/// Automatically selects the appropriate encoding strategy based on the
311/// dictionary's mode (Radix, Chunked, or ByteRange).
312///
313/// # Arguments
314///
315/// * `data` - The binary data to encode
316/// * `dictionary` - The dictionary to use for encoding
317///
318/// # Returns
319///
320/// A string containing the encoded data
321///
322/// # Examples
323///
324/// ```
325/// use base_d::{Dictionary, EncodingMode};
326///
327/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
328/// let chars: Vec<char> = "01".chars().collect();
329/// let dictionary = Dictionary::builder()
330/// .chars(chars)
331/// .mode(EncodingMode::Radix)
332/// .build()?;
333/// let encoded = base_d::encode(b"Hi", &dictionary);
334/// # Ok(())
335/// # }
336/// ```
337pub fn encode(data: &[u8], dictionary: &Dictionary) -> String {
338 match dictionary.mode() {
339 EncodingMode::Radix => encoders::algorithms::radix::encode(data, dictionary),
340 EncodingMode::Chunked => encoders::algorithms::chunked::encode_chunked(data, dictionary),
341 EncodingMode::ByteRange => {
342 encoders::algorithms::byte_range::encode_byte_range(data, dictionary)
343 }
344 }
345}
346
347/// Decodes a string back to binary data using the specified dictionary.
348///
349/// Automatically selects the appropriate decoding strategy based on the
350/// dictionary's mode (Radix, Chunked, or ByteRange).
351///
352/// # Arguments
353///
354/// * `encoded` - The encoded string to decode
355/// * `dictionary` - The dictionary used for encoding
356///
357/// # Returns
358///
359/// A `Result` containing the decoded binary data, or a `DecodeError` if
360/// the input is invalid
361///
362/// # Errors
363///
364/// Returns `DecodeError` if:
365/// - The input contains invalid characters
366/// - The input is empty
367/// - The padding is invalid (for chunked mode)
368///
369/// # Examples
370///
371/// ```
372/// use base_d::{Dictionary, EncodingMode, encode, decode};
373///
374/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
375/// let chars: Vec<char> = "01".chars().collect();
376/// let dictionary = Dictionary::builder()
377/// .chars(chars)
378/// .mode(EncodingMode::Radix)
379/// .build()?;
380/// let data = b"Hi";
381/// let encoded = encode(data, &dictionary);
382/// let decoded = decode(&encoded, &dictionary)?;
383/// assert_eq!(data, &decoded[..]);
384/// # Ok(())
385/// # }
386/// ```
387pub fn decode(encoded: &str, dictionary: &Dictionary) -> Result<Vec<u8>, DecodeError> {
388 match dictionary.mode() {
389 EncodingMode::Radix => encoders::algorithms::radix::decode(encoded, dictionary),
390 EncodingMode::Chunked => encoders::algorithms::chunked::decode_chunked(encoded, dictionary),
391 EncodingMode::ByteRange => {
392 encoders::algorithms::byte_range::decode_byte_range(encoded, dictionary)
393 }
394 }
395}
396
397#[cfg(test)]
398mod tests;